Skip to main content

Abstract

In this article, we review the construction of Hamiltonian perturbation theories with emphasis on Hori’s theory and its extension to the case of dynamical systems with several degrees of freedom and one resonant critical angle. The essential modification is the comparison of the series terms according to the degree of homogeneity in both \(\sqrt \varepsilon \) and a parameter which measures the distance from the exact resonance, instead of just \(\sqrt \varepsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bohlin, K.: 1888, “Über eine neue Annäherungsmetode in der Störungstheorie”, Bihang Svenska Vet.-Akad. 14 Afd.I No.5, 1–26.

    Google Scholar 

  • Brouwer, D.: 1959, “Solution of the problem of artificial satellite theory without drag”, Astron. J. 64, 378–397.

    Article  MathSciNet  ADS  Google Scholar 

  • Brouwer, D. and Clemence, G.M.: 1961, Methods of Celestial Mechanics, Academic Press, New York.

    Google Scholar 

  • Campbell, J.A. and Jefferys, W.H.: 1970, “Equivalence of the perturbation theories of Hori and Deprit”, Celest. Mech. 2, 467–473.

    Article  ADS  MATH  Google Scholar 

  • Carathéodory, C.: 1965, Calculus of Variations and Partial Differential Equations of the First Order, Holden-Day, San Francisco.

    MATH  Google Scholar 

  • Deprit. A.: 1969, “Canonical transformation depending on a small parameter”, Celest. Mech. 1, 12–30.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ferraz-Mello, S.: 1990, “Averaging Hamiltonian systems”, in: Modern Methods in Celestial Mechanics (D. Benest, Cl. Froeschlé, eds), Ed. Frontières, pp.151–211.

    Google Scholar 

  • Ferraz-Mello, S.:1997, Hamiltonian Averaging Theories and Resonance in Celestial Mechanics, to be published.

    Google Scholar 

  • Garfinkel, B., Jupp, A. and Williams, C.: 1971, “A recursive Von Zeipel algorithm for the ideal resonance problem”, Astron. J. 76, 157.

    Article  MathSciNet  ADS  Google Scholar 

  • Gröbner, W.: 1960, Die Lie Reihen und ihre Anwendungen, Deutsche Verl. Wiss., Berlin.

    MATH  Google Scholar 

  • Hori, G.-I.: 1966, “Theory of general perturbations with unspecified canonical variables”, Publ. Astron. Soc. Japan, 18, 287–296.

    ADS  Google Scholar 

  • Jupp, A.: 1970, “On the ideal resonance problem — II”, Mon. Not. Roy. Astron. Soc. 148, 197–210.

    ADS  Google Scholar 

  • Jupp, A.: 1982, “A comparison of the Brouwer-Von Zeipel and Brouwer-Lie series methods in resonant systems”, Celest. Mech. 26, 413–422.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jupp, A.:1992, “Chapter XIX — Bohlin Methods”, Not. Scient. Techn. Bur. Longit. No. S 036.

    Google Scholar 

  • Mersman, W. A.: 1970, “A new algorithm for the Lie transforms” Celest. Mech. 3, 81–89.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Poincaré, H.:1893, Les Méthodes Nouvelles de la Mécanique Celeste, Gauthier-Villars, Paris, Vol. II.

    Google Scholar 

  • Sérsic, J.L.:1956, Aplicaciones de un Certo Tipo de Transformaciones Canónicas a la Mecánica Celeste, Dr. Thesis, Univ. Nac. La Plata, (repr. Serie Astronomica, Obs. Astron. Univ. La Plata 35, 1969).

    Google Scholar 

  • Sessin, W.: 1986, “A theory of integration for the extended Delaunay method”, Celest. Mech. 39, 173–180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Von Zeipel, H.:1916, “Recherches sur le mouvement des petites planètes”, Arkiv. Mat. Astron. Fysik, 11-13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ferraz-Mello, S. (1997). On Hamiltonian Averaging Theories and Resonance. In: Wytrzyszczak, I.M., Lieske, J.H., Feldman, R.A. (eds) Dynamics and Astrometry of Natural and Artificial Celestial Bodies. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5534-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5534-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6330-2

  • Online ISBN: 978-94-011-5534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics