Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 494))

Abstract

The thermal evolution of coronal magnetic structures is studied under the assumption that the inertial terms are small. Assuming the coronal heating function is due to the damping of waves, then the amount of energy supplied to the loop will decay from the footpoint towards the summit The effect of the decay length on the heating is investigated, and when this length is below a critical value a cool condensation forms. Different initial profiles are considered and either purely hot plasmas or cool condensations can be found depending on whether the initial profile is above or below a threshold value.

Address from August 1996: Centro de Astrofisica Teorica, Facultad de Ciencias, Universidad de los Andes, Merida, Venezuela.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Field, G.B. (1965) Thermal Instability, Astrophysical J. 142, 531.

    Article  ADS  Google Scholar 

  2. Mendoza-Briceno, C. A. (1996) The Nonlinear Thermal Evolution of Coronal Structures, PhD Thesis, University of St. Andrews.

    Google Scholar 

  3. Mendoza, C. A. and Hood, A. W. (1996) Formation of cool condensation in a magnetic structure, Astrophysical Lett. & Communications (in press).

    Google Scholar 

  4. Mok, Y., Drake, J. F., Schnack, D. D. and Van Hoven, G. (1990) Prominence formation in a coronal loop, Astrophysical J. 359, 228.

    Article  ADS  Google Scholar 

  5. Pikel’ner, S.B. (1971) Origin of quiescent prominences, Solar Physics 17, 44.

    Article  ADS  Google Scholar 

  6. Tandberg-Hanssen, E. (1974) Solar Prominences, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  7. Wu, S.T., Bao, J. J., An, C.H., and Tandberg-Hanssen, E. (1990) The of condensation and heat conduction in the formation of prominences: An mhd simulation, Solar Physics 125, 277.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mendoza-Briceno, C.A., Hood, A.W. (1997). Thermal Evolution of a Coronal Condensation. In: Mouradian, Z., Stavinschi, M. (eds) Theoretical and Observational Problems Related to Solar Eclipses. NATO ASI Series, vol 494. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5492-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5492-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4619-7

  • Online ISBN: 978-94-011-5492-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics