Skip to main content

Electron Diffraction And Microscopy

  • Chapter
Carbyne and Carbynoid Structures

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 21))

Abstract

Electron microscopy and electron diffraction have proved to be the most appropriate techniques for investigating the crystal structure and microstructure of carbyne crystals because of the crystal size range. Carbyne was first identified in meteorites by electron diffraction. With the synthesis of carbynes, electron microscopy and electron diffraction have proved to be important techniques in identifying these materials and comparing carbynes prepared by different methods. These techniques have also proved useful in investigating the effects of annealing, electron irradiation and ion irradiation. On the basis of electron diffraction data a number of models for the crystal structure of carbynes have been developed. In one model it is proposed that kinks occur in the carbon chains. The existence of these kinks can explain the lamellar nature of carbyne crystals observed in electron micrographs. A number of suggestions have been advanced to explain the occurrence of these kinks including the application of paracrystalline theory and the existence of charge-density soliton waves in the one dimensional carbon chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. El Goresy, A., and Donnay, G.: New allotropic form of carbon from the Ries crater Science 161 (1968), 363–364.

    Article  CAS  Google Scholar 

  2. Kasatochkin, V.I., Sladkov, A.M., Kudryavtsev, Yu.P., Popov, N.M. and Korshak, V.V.: Crystalline forms of the linear modification of carbon, Dokl. Akad. Nauk. SSSR 177 (1967), 358–360.

    CAS  Google Scholar 

  3. Heimann, R.B., Kleiman, J., and Salansky, N.M.: Structural aspects and conformation of linear carbon polytypes (carbynes), Carbon 22 (1984), 147–155.

    Article  CAS  Google Scholar 

  4. Whittaker, A.G., and Kintner, P.L.: Carbon: Observations on the new allotropic form, Science 165 (1969), 589–591.

    Article  CAS  Google Scholar 

  5. Hayatsu, R., Scott, R.G., Studier, M.H., Lewis, R.S., and Anders, E.: Carbynes in meteorites: detection, low-temperature origin and implications for interstellar molecules, Science 209 (1980), 1515–1517.

    Article  CAS  Google Scholar 

  6. Kasatochkin, V.I., Shterenberg, L.E., Kazakov, M.E., Slesarev, V.N., and Belousova, L.V.: The thermic transformation of carbyne under pressure, Dokl. Akad. Nauk. SSSR 209 (1973), 388–391.

    CAS  Google Scholar 

  7. Whittaker, A.G.: Carbon: occurrence of carbyne forms of carbon in natural graphite, Carbon 17 (1979), 21–24.

    Article  CAS  Google Scholar 

  8. Whittaker, A.G., Watts E.J., Lewis, R.S., and Anders, E: Carbynes: Carriers of primordial noble gases in meteorites, Science 209 (1980), 1512–1514.

    Article  CAS  Google Scholar 

  9. Smith, P.P.K.: Carbon in carbonaceous chondrites: carbyne or graphite? Nature 291 (1981), 15–16.

    Article  Google Scholar 

  10. Smith, P.P.K., and Busek, P.R.: Carbyne forms of carbon: do they exist? Science 216 (1982), 984–986.

    Article  CAS  Google Scholar 

  11. Whittaker, A.G.: Carbyne forms of carbon: evidence for their existence, Science 229 (1985), 485–496.

    Article  CAS  Google Scholar 

  12. Sladkov, A.M.: Carbyne — a new allotropie form of carbon, Sov. Sci. Rev. Sect. B3 (1981), 75–110.

    Google Scholar 

  13. Smith, P.P.R. and Busek, P.R.: Reply to: Carbyne forms of carbon: evidence for their existence, Science 229 (1985), 486–487.

    Article  CAS  Google Scholar 

  14. Rietmeijer, F.J.M.: Are crystalline C-(H-O-N) carbons the elusive meteoritic carbynes? Meteriotics 28 (1993), 242–245.

    Article  Google Scholar 

  15. Whittaker, A.G. and Wolten, G.M.: Carbon: A suggested new hexagonal crystal form, Science 178 (1972), 54–56.

    Article  CAS  Google Scholar 

  16. Whittaker, A.G., Neudorffer, M.E., and Watts, E.J.: Carbon a rhombohedral carbyne form, Carbon 21 (1983), 597–599.

    Article  CAS  Google Scholar 

  17. Kasatochkin, V.I., Korshak, V.V., Kudryavtsev, Yu. P., Sladkov, A.M., and Sterenberg, I.E.: On crystalline structure of carbyne, Carbon 11 (1973), 70–72.

    Article  CAS  Google Scholar 

  18. Kasatochkin, V.I., Sladkov, A.M., Kudryavtsev, Yu.P., Popov, N.M., and Korshak, V.V.: Crystalline forms of the linear modification of carbon, Dokl. Akad. Nauk SSSR 177 (1967), 358–360.

    CAS  Google Scholar 

  19. Sladkov, A.M., Korshak, V.V, and Nepochatykh, V.P.: Polymers with cumulated double bonds in the chain, Bull. Acad. Sci. USSR, Div Chem. Sci., 1 January (1968), 191–193.

    Google Scholar 

  20. Kasatochkin, V.I., Savaranskiy, V.V., Smirnov, B.N., and Melnitchenko, V.M.: Carbon condensed from carbon vapours, Dokl. Akad. Nauk. SSSR 217(4) (1974), 796–799.

    CAS  Google Scholar 

  21. Sladkov, A.M., Kasatochkin, V.I., Kudryavtsev, Yu.P., and Korshak, V.V.: Synthesis and properties of valuable polymers of carbon, Isv. Akad. Nauk SSSR, Ser. Khim. 12 (1968), 2697–2704.

    Google Scholar 

  22. Zorin, E.I., Sukhorukov, V.V. and Tetel’baum D.I.: Deposition of carbine and diamond-like films in the plasma of an rf gas discharge, Sov. Phys. Tech. Phys. 25(1) (1980), 103–105.

    Google Scholar 

  23. Heimann, R.B., Kleiman, J. and Salansky, N.M.: Structural aspects and conformation of linear carbon polytypes (carbynes), Carbon 22 (1984), 147–155.

    Article  CAS  Google Scholar 

  24. Fitzgerald, A.G., Simpson, M, Dederski, G.A., Moir, P.A., Matthews, A., and Tither, D.: Triode technology in the sputter deposition of carbon films, Carbon 26 (1988), 229–234.

    Article  CAS  Google Scholar 

  25. Fitzgerald, A.G., Simpson, M., Dederski, G.A., Storey, B.E., Moir, P.A. and Tither, D.: Carbon films produced by fast atom bombardment, Carbon 26 (1988), 547–552.

    Article  CAS  Google Scholar 

  26. Kudryavtsev, Yu. P., Evsyukov, S.E., Babaev, V.G., Guseva, M.B., Khvostov V.V. and Krechko L.M.: Oriented carbyne layers, Carbon 30 (1992), 213–221.

    Article  CAS  Google Scholar 

  27. Whittaker, A.G. and Wolten, G.M.: Carbon: A suggested new hexagonal crystal form, Science 178 (1972), 54–56.

    Article  CAS  Google Scholar 

  28. Melnitchenko, V.M., Smirnov, B.N., Varlakov, V.P., Nikulin, Yu.P., and Sladkov, A.M.: Lamellar morphology and inner structure of crystalline carbyne fragments, Carbon 21 (1983), 131–133.

    Article  CAS  Google Scholar 

  29. Kasatochkin, V.I. and Babchinitser, T.M.: Chain length of carbine, a linear carbon polymer, Dokl. Acad. Nauk SSSR 184(2) (1969), 353–354.

    CAS  Google Scholar 

  30. Guseva, M.B.: Ion Stimulation processes on the NaCl crystal-surface by ion irradiation Izv. Akad. Nauk SSSR 50 (1986), 459–464.

    CAS  Google Scholar 

  31. Guseva, M.B., Babaev, V.G., Nikiforova, N.N., and Savchenko, N.F.: Variation of the structure and properties of carbon films under slowed ion irradiation, Vopr. At. Nauk. Tekhn., Ser. Fiz. Radiats. Poverzhdenii. Radiats. Material. 2 (1983), 92–95.

    CAS  Google Scholar 

  32. Fitzgerald, A.G. and Henderson A.E.: Microbeam analysis of a-C:H films, in J.J. Pouch and S.A. Alterovitz (eds.), Properties and Characterisation of Amorphous Carbon Films, Materials Science Forum 52 & 53, Trans Tech Publications, Aedermannsdorf, Switzerland, 1990, pp. 495–514.

    Google Scholar 

  33. Guseva, M.B., Savchenko, N.F., and Babaev, V.G.: New data on the structure of carbine, Sov. Phys. Dokl. 30(8) (1986), 686–687.

    Google Scholar 

  34. Kasatochkin, V.I., and Sladkov, A.M.: Crystalline forms of linear modification of carbon, Dokl. Acad. Nauk SSSR 177(2) (1967), 358–360.

    CAS  Google Scholar 

  35. Kasatochkin, V.I., Kazakov, M.E., Kudryavtsev, Yu. P., Sladkov, A.M., and Korshak, V.V.: Enthalpy of carbine — a chain polymer of carbon, Dokl. Acad. Nauk SSSR 183(1) (1968), 109–111.

    CAS  Google Scholar 

  36. Patai, S. (Ed.): The chemistry of the carbon-carbon triple bond, Wiley, New Jersey, 1978.

    Google Scholar 

  37. Whittaker, A.G.: Chaoite coating process, US Patent 4248,909 (3 Feb. 1981).

    Google Scholar 

  38. Heimann, R.B., Kleiman, J., and Salansky, N.M.: A unified structural approach to linear carbon polytypes, Nature 306 (1983), 164–167.

    Article  CAS  Google Scholar 

  39. Whittaker, A.G.: The controversial carbon solid-liquid-vapour triple point, Nature 276 (1978), 695–696.

    Article  CAS  Google Scholar 

  40. Whittaker, A.G.: Carbon: A new view of its high-temperature behaviour, Science 200 (1978) 763–764.

    Article  CAS  Google Scholar 

  41. Kudryavtsev, Yu. P., Evsyukov, S.E., Guseva, M.B., Babaev, V.G., and Khvostov, V.V.: Carbyne — the third allotropic form of carbon, Russian Chemical Bulletin 42 (1993), 399–413.

    Article  Google Scholar 

  42. Hosemann, R: Paracrystals in biopolymers and synthetic polymers, Endeavour 32(117) (1973) 99–105.

    CAS  Google Scholar 

  43. Heimann, R.B.: Linear finite carbon chains (carbynes): their role during dynamic transformation of graphite to diamond, and their geometric and electronic structure, Diamond and Related Materials 3 (1994), 1151–1157.

    Article  CAS  Google Scholar 

  44. Bak, P.: Solitons in incommensurable systems, in A.R. Bishop and T. Schneider (eds.), Solitons and Condensed Matter Physics, Springer Series in Solid-State Sciences 8, Berlin, Springer Verlag, 1978, pp. 216–223.

    Chapter  Google Scholar 

  45. Di Salvo, F.J., and Rice, T.N.: Charge-density waves in transition-metal compounds, Phys. Today 32(4) April (1979), 32–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fitzgerald, A.G. (1999). Electron Diffraction And Microscopy. In: Heimann, R.B., Evsyukov, S.E., Kavan, L. (eds) Carbyne and Carbynoid Structures. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4742-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4742-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5993-0

  • Online ISBN: 978-94-011-4742-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics