Skip to main content

Transport Coefficients in Rotating Weakly Compressible Turbulence

  • Chapter
Modeling Complex Turbulent Flows

Abstract

Analytical studies of compressible turbulence have found that compressible velocity fluctuations create both effective fluid transport properties and an effective equation of state. This paper investigates the additional effects of rotation on compressible turbulence. It is shown that rotation modifies the transport properties of compressible turbulence by replacing the turbulence time scale by a rotational time scale, much as rotation modifies the transport properties of incompressible turbulence. But thermal equilibrium properties are modified in a more complex manner. Two regimes are possible: one dominated by incompressible fluctuations, in which the sound speed is modified as it is in incompressible turbulence, and a rotation dominated regime in which the sound speed enhancement is rotation dependent. The dimensionless parameter which discriminates between regimes is identified. In general, rotation is found to suppress the effects of compressibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cambon, C. and Jacquin, L., 1989. “Spectral approach to non-isotropic turbulence subjected to rotation,” J. Fluid Mech. 202, p. 295.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S., 1951. “The fluctuation of density in isotropic turbulence,” Proc. Roy. Soc. London A 210, p. 18.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kaneda, Y., 1981. “Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function,” J. Fluid Mech. 107, p. 131.

    Article  ADS  Google Scholar 

  • Kraichnan, 1959. “The structure of turbulence at very high Reynolds number,” J. Fluid Mech. 5, p. 497.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kraichnan, 1964. “Kolmogorov’s hypotheses and Eulerian turbulence theory,” Phys. Fluids 7, p. 1723.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kraichnan, R.H., 1965. “Lagrangian-history closure approximation for turbulence,” Phys. Fluids 8, p. 575.

    Article  MathSciNet  ADS  Google Scholar 

  • Kraichnan, R.H., 1971. “Inertial range transfer in two and three dimensional turbulence,” J. Fluid Mech. 47, p. 525.

    Article  ADS  MATH  Google Scholar 

  • Kraichnan, R.H., 1987. “An interpretation of the Yakhot-Orszag turbulence theory,” Phys. Fluids 30, p. 2400.

    Article  ADS  MATH  Google Scholar 

  • Mahalov, A. and Zhou, Y., 1996. “Analytical and phenomenological studies of rotating turbulence,” Phys. Fluids 8, p. 2138.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rubinstein, R. and Erlebacher, G., 1997. “Transport coefficients in weakly compressible turbulence,” Phys. Fluids 9.

    Google Scholar 

  • Shimomura, Y. and Yoshizawa, A., 1986. “Statistical analysis of anisotropic turbulent viscosity in a rotating system,” J. Phys. Soc. Japan 55, p. 1904.

    Article  ADS  Google Scholar 

  • Staroselski I., Yakhot V., Orszag, S.A., and Kida, S., 1990. “Long time large scale properties of a randomly stirred compressible fluid,” Phys. Rev. Lett. 65, p. 171.

    Article  ADS  Google Scholar 

  • Waleffe, F., 1993. “Inertial transfers in the helical decomposition,” Phys. Fluids 5, p. 677.

    Article  ADS  MATH  Google Scholar 

  • Woodruff, S.L., 1992. “Dyson equation analysis of inertial-range turbulence,” Phys. Fluids A 5, p. 1077.

    Article  ADS  Google Scholar 

  • Woodruff, S.L., 1994. “A similarity solution for the direct interaction approximation and its relationship to renormalization group analyses of turbulence,” Phys. Fluids 6, p. 3051.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yakhot, V. and Orszag, S.A., 1986. “Renormalization group analysis of turbulence,” J. Sci. Comput 1, p. 3.

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshizawa, A., 1984. “Statistical analysis of the deviation of the Reynolds stress from its eddy viscosity representation,” Phys. Fluids 27, p. 3177.

    Article  Google Scholar 

  • Yoshizawa, A., 1995. “Simplified statistical approach to complex turbulent flows and ensemble-mean compressible turbulence modeling,” Phys. Fluids 7, p. 3105.

    Article  ADS  MATH  Google Scholar 

  • Yoshizawa A., Tsubokura M., Kobayashi T., and Taniguchi, M., 1996. “Modeling of the dynamic subgrid scale viscosity in large eddy simulation,” Phys. Fluids 8, p. 2254.

    Article  ADS  MATH  Google Scholar 

  • Zakharov, V.E., L’vov, V.S., and Falkovich, G., 1992. Kolmogorov Spectra of Turbulence I, Springer.

    Google Scholar 

  • Zhou, Y., 1995. “A phenomenological treatment of rotating turbulence,” Phys. Fluids 7, p. 2092.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rubinstein, R., Zhou, Y., Erlebacher, G. (1999). Transport Coefficients in Rotating Weakly Compressible Turbulence. In: Salas, M.D., Hefner, J.N., Sakell, L. (eds) Modeling Complex Turbulent Flows. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4724-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4724-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5986-2

  • Online ISBN: 978-94-011-4724-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics