Skip to main content

Practical Physical Chemistry and Empirical Predictions of Methane Hydrate Stability

  • Chapter
Natural Gas Hydrate

Part of the book series: Coastal Systems and Continental Margins ((CSCM,volume 5))

Abstract

Accurate and precise prediction of the temperature and pressure (P-T) conditions at the boundary of the methane hydrate stability field is an essential component of a variety of endeavors in the field of geochemistry. Kvenvolden (1988), Gornitz and Fung (1994) and others have used knowledge of the P-T stability conditions to define the geophysical limits of gas hydrates and thereby estimate the size of the global reservoir. As the thermal signature of global warming penetrates into the ocean (Levitus et al., 2000), precise knowledge of the stability of gas hydrates will be required to assess the risks of decomposition in this reservoir. Recently, Ruppel (1997) has suggested that a discrepancy exists between in situ temperature measurements on the Blake Ridge and the predicted base of the hydrate stability zone. This claim is based in part upon P-T predictions of gas hydrate stability. In our own research, we have conducted a series of in situ deep-sea gas hydrate synthesis experiments (Brewer, et al., 1998) and have begun using an ROV to prospect for gas hydrate out-crops and undersea gas vents, which potentially result from decomposing gas hydrate deposits. One of the goals of this field work is to explore for gas hydrates close to the limit of the stability zone and this creates the need for accurate and precise predictions. Given the small temperature gradients with depth in the deep-sea, an error of 0.5°C, could mean a depth error of more than 100 meters. With a shallow sloping bottom (1% grade), one could easily be ten kilometers or more off target if the wrong temperature is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peltzer, E.T., Brewer, P.G. (2000). Practical Physical Chemistry and Empirical Predictions of Methane Hydrate Stability. In: Max, M.D. (eds) Natural Gas Hydrate. Coastal Systems and Continental Margins, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4387-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4387-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1362-1

  • Online ISBN: 978-94-011-4387-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics