Skip to main content

Sulfur Metabolism among Hyperthermophiles

  • Chapter
Journey to Diverse Microbial Worlds

Part of the book series: Cellular Origin and Life in Extreme Habitats ((COLE,volume 2))

Abstract

Sulfur biochemistry figures prominently in the bioenergetics of many strictly anaerobic hyperthermophiles (organisms capable of growth to at least 90°C). Sulfidogenesis by the reduction of elemental sulfur to sulfide is common among the deepest phylogenetic branches of extant microbes (Figure 1). These sulfidogens are all hyperthermophiles and most are Archaea. The capacity to carry out elemental sulfur reduction is found in both archaeal lineages. Two groups of Bacteria, the Thermotogales and Aquifecales, are also hyperthermophilic sulfidogens. Other forms of sulfur metabolism are also found among hyperthermophiles including sulfate reduction by the archaeon Archaeoglobus and sulfur oxidation by Sulfolobus and its relatives. Examples of each of these will be considered here. For many of these organisms, we do not know if the organism derives any energy from carrying out sulfur reduction. This review will compare mechanisms of sulfidogenesis in selected hyperthermophiles to highlight features that might shed light on the mechanisms and evolution of this metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach-Richter, L., Gupta, R., Stetter, K. O. and Woese, C. R. (1987) System. Appl. Microbiol. 9, 34–9.

    Article  CAS  Google Scholar 

  • Adams, M. W. W., and Kletzin, A. (1996) Advances in Protein Chemistry 48, 101–180.

    Article  PubMed  CAS  Google Scholar 

  • Belkin, S., Wirsen, C. O., and Jannasch, H. W. (1986) Appl. Environ. Microbiol. 51, 1180–1185.

    PubMed  CAS  Google Scholar 

  • Blumentals, I. I., Itoh, M., Olson, G. J., and Kelly, R. M. (1990) Appl. Environ. Microbiol. 56, 1255–1262.

    PubMed  CAS  Google Scholar 

  • Bobik, T. A., Olson, K. D., Noll, K. M., and Wolfe, R. S. (1987) Biochem. Biophys. Res. Commun. 149, 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Bobik, T. A., and Wolfe, R. S. (1989) J. Biol.Chem. 264, 18714–18718.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. (1978) Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, NY.

    Book  Google Scholar 

  • Bryant, F. O., and Adams, M. W. W. (1989) J. Biol.Chem. 264, 5070–5079.

    PubMed  CAS  Google Scholar 

  • Childers, S. E. (1997) Ph.D. Dissertation, University of Connecticut, Storrs, p 138.

    Google Scholar 

  • Childers, S. E., and Noll, K. M. (1994) Appl. Environ. Microbiol. 60, 2622–2626.

    PubMed  CAS  Google Scholar 

  • Childers, S. E., and Noll, K. M. (1995) In: Abstr. Ann. Meet. Amer. Soc. Microbiol., Washington, DC, p 558.

    Google Scholar 

  • Childers, S. E., Vargas, M, and Noll, K. M (1992) Appl. Environ. Microbiol. 58, 3949–3953.

    PubMed  CAS  Google Scholar 

  • Deckert, G., et al. (1998) Nature 392, 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Dirmeier, R., Keller, M, Frey, G., Huber, H., and Stetter, K. O. (1998) Eur. J. Biochem. 252, 486–491.

    Article  PubMed  CAS  Google Scholar 

  • Emmel, T., Sand, W., König, W. A., and Bock, E. (1986) J Gen. Microbiol. 132, 3415–3420.

    CAS  Google Scholar 

  • Fiala, G., and Stetter, K. O. (1986) Arch.Microbiol. 145, 56–61.

    Article  CAS  Google Scholar 

  • Harmsen, H. J. M. Prieur, D., and Jeanthon, C. (1991a) Appl. Environ. Microbiol. 63, 2876–2883.

    Google Scholar 

  • Harmsen, H. J. M., Prieur, D., and Jeanthon, C. (1991b) Appl. Environ. Microbiol. 63, 4061–4068.

    Google Scholar 

  • Hedderich, R., Berkessel, A., and Thauer, R. K. (1989) FEBS Lett. 255, 67–71.

    Article  CAS  Google Scholar 

  • Hedrick, D. B., Pledger, R. D., White, D. C., and Baross, J. A. (1992) FEMS Microbiol. Ecol. 101, 1–10.

    Google Scholar 

  • Heiden, S., Hedderich, R., Setzke, E., and Thauer, R. K. (1993) Eur. J. Biochem. 213, 529–535.

    Article  PubMed  CAS  Google Scholar 

  • Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B., and Stetter, K. O. (1986) Arch. Microbiol. 144, 324–333.

    Article  CAS  Google Scholar 

  • Huber, R., Wilharm, T., Huber, D., Trincone, A., Burggraf, S., König, H., Rachel, R., Rockinger, I., Fricke, H., and Stetter, K. O. (1992) Syst. Appl. Microbiol. 15, 340–351.

    Article  Google Scholar 

  • Igarashi, Y., and Kodama, T. (1990) FEMS Microbiol. Rev. 87, 403–406.

    Article  CAS  Google Scholar 

  • Janssen, P. H., and Morgan, H. W. (1992) FEMS Microbiol. Lett. 96, 213–217.

    Article  CAS  Google Scholar 

  • Jungermann, K., Thauer, R. K., Leimenstoll, G., and Decker. K. (1973) Biochim. Biophys. Acta 305, 268–280.

    Article  PubMed  CAS  Google Scholar 

  • Juszczak, A., Aono, S., and Adams, M. W. (1991) J. Biol. Chem. 266, 13834–13841.

    PubMed  CAS  Google Scholar 

  • Käslin, S. (1997) Diplom, University of Zürich, Zürich, p 52.

    Google Scholar 

  • Käslin, S., Childers, S. E., and Noll, K. M. (1998) Arch. Microbiol. 170, 297–303.

    Article  PubMed  Google Scholar 

  • Kengen, S. W. M, and Stams, A. J. M. (1994) Arch. Microbiol. 161, 168–175.

    Article  CAS  Google Scholar 

  • Kennish, M. J., Lutz, R. A., and Simoneit, B. R. T. (1992) Rev. Aquatic Sci. 6. 467–477.

    Google Scholar 

  • Klein, A. R., Breitung, J., Linder, D., Stetter, K. O., and Thauer,R. K. (1993) Arch. Microbiol. 159, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Klenk, H. P., et al., (1997) Nature 390, 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Kletzin, A. (1989) J. Bacteriol. 171, 1638–1643.

    PubMed  CAS  Google Scholar 

  • Kletzin, A. (1992) J. Bacteriol. 174, 5854–5859.

    PubMed  CAS  Google Scholar 

  • Kunow, J., Schwörer, B., Stetter, K. O., and Thauer, R. K. (1993) Arch. Microbiol. 160, 199–205.

    CAS  Google Scholar 

  • Ma, K., and Adams, M. W. W. (1994) J. Bacteriol. 176, 6509–6517.

    PubMed  CAS  Google Scholar 

  • Ma, K., Hutchins, A., Sung, S. J. S., and Adams, M. W. W. (1997) Proc. Natl. Acad. Sci. U S A 94, 9608–9613.

    Article  PubMed  CAS  Google Scholar 

  • Ma, K., Schicho, R. N., Kelly, R. M., and Adams, M. W. W. (1993) Proc. Natl. Acad. Sci. U S A 90, 5341–5344.

    Article  PubMed  CAS  Google Scholar 

  • Ma, K., Zhou, Z. H., and Adams, M. W. W. (1994) FEMS Microbiol. Lett. 122. 245–250.

    Article  CAS  Google Scholar 

  • McCollom T. M., and Shock, E. L. (1997) GeochIm. Cosmochim. Acta 61, 4375–4391.

    Article  PubMed  CAS  Google Scholar 

  • Pedroni, P., Delia Volpe, A., Galli, G., Mura, G. M., Pratesi, C., and Grandi, G. (1995) Microbiology 141, 449–458.

    Article  PubMed  CAS  Google Scholar 

  • Peinemann, S., Hedderich, R., Blaut, M., Thauer, R. K., and Gottschalk, G. (1990) FEBS Lett. 263, 57–60.

    Article  CAS  Google Scholar 

  • Pihl, T. D., Black, L. K., Schulman, B. A., and Maier, R. J. (1992) J. Bacteriol. 174, 137–143.

    PubMed  CAS  Google Scholar 

  • Pihl, T. D., and Maier, R. J. (1991) J. Bacteriol. 173, 1839–1844.

    PubMed  CAS  Google Scholar 

  • Pihl, T. D., Schicho, R. N., Black, L. K., Schulman, B. A., Maier, R. J., and Kelly, R. M. (1990) Genet. Eng. Rev. 8, 345–377.

    Article  CAS  Google Scholar 

  • Pley, U., Seger, J., Woese, C. R., Gambacorta, A., Jannasch, H. W., Fricke, H., Rachel, R., and Stetter, K. O. (1991) System. Appl. Microbiol. 14, 245–253.

    Article  Google Scholar 

  • Ravot, G., Ollivier, B., Fardeau, M. L., Patel, B. K., Andrews, K. T., Magot, M., and Garcia, J. L. (1996) Appl. Environ. Microbiol. 62, 2657–2659.

    PubMed  CAS  Google Scholar 

  • Ravot, G., Ollivier, B., Magot, M., Patel, B. K. C., Crolet, J-L., Fardeau, M.-L., and Garcia, J.-L. (1995) Appl. Environ. Microbiol. 61, 2053–2055.

    PubMed  CAS  Google Scholar 

  • Ritzau, M., Keller, M., Wessels, P., Stetter, K. O., and Zeeck, A. (1993) Leibigs. Ann. Ghem. 871-876.

    Google Scholar 

  • Schäfer, G. (1996) Biochim. Biophys. Acta 1211, 163–200.

    Google Scholar 

  • Schauder, R., and Müller, E. (1993) Arch. Microbiol. 160, 377–382.

    Article  CAS  Google Scholar 

  • Schicho. R. N., Ma, K., Adams, M. W. W., and Kelly, R. M. (1993) J. Bacteriol. 175, 1823–1830.

    PubMed  CAS  Google Scholar 

  • Schönheit P., and Schäfer, T. (1995) World J. Microbiol. Biotechnol. 11, 26–57.

    Article  Google Scholar 

  • Schwörer, B., Breitung, J., Klein, A. R., Stetter, K. O., and Thauer, R. K. (1993) Arch. Microbiol. 159, 225–232.

    Article  PubMed  Google Scholar 

  • Segerer, A., Stetter, K. O., and Klink, F. (1985) Nature 313. 787–789.

    Article  PubMed  CAS  Google Scholar 

  • Setzke, E., Hedderich, R., Heiden, S., and Thauer, R. K. (1994) Eur. J. Bioochem. 220, 139–148.

    Article  CAS  Google Scholar 

  • Shivvers, D. W., and Brock, T. D. (1973) J. Bacteriol. 114. 706–710.

    PubMed  CAS  Google Scholar 

  • Speich, N., Dahl, C., Heisig, P., Klein, A., Lottspeich. F., Stetter, K. O. and Triüper, H. G. (1994) Microbiology 140, 1273–1284.

    Article  PubMed  CAS  Google Scholar 

  • Speich, N., and Trüper, H. G. (1988) J Gen. Microbiol. 134, 1419–1425.

    CAS  Google Scholar 

  • Stetter K. O. 1996 FEMS Microbiol. Rev. 18 149–158

    Article  CAS  Google Scholar 

  • Stetter, K. O., and Gaag, G. (1983) Nature 305, 309–311.

    Article  CAS  Google Scholar 

  • Stetter, K. O., Huber, R., Blöchl, E., Kurr, M., Eden, R. D., Fielder, M., Cash. H., and Vance, I. (1993) Nature 365, 743–745.

    Article  Google Scholar 

  • Stetter, K. O., König, H., and Stackebrandt, E. (1983) System. Appl. Microbiol. 4. 535–551.

    Article  CAS  Google Scholar 

  • Stetter, K. O., Lauerer, G., Thomm, M., and Neuner, A. (1987) Science 236, 822–824.

    Article  PubMed  CAS  Google Scholar 

  • Vargas, M., Kashefi, K., Blunt-Harris, E. L., and Lovley, D. R. (1998) Nature 395, 65–67

    Article  PubMed  CAS  Google Scholar 

  • Von Damm, K. L. (1990) Annu. Rev. Earth Planet. Sci. 18. 173–204.

    Article  Google Scholar 

  • Zillig, W., Yeats, S., Holz, I., Böck, A., Gropp, F., Rettenberger, M., and Lutz. S. (1985) Nature 313, 789–791.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph Seckbach

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noll, K.M., Childers, S.E. (2000). Sulfur Metabolism among Hyperthermophiles. In: Seckbach, J. (eds) Journey to Diverse Microbial Worlds. Cellular Origin and Life in Extreme Habitats, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4269-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4269-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5850-6

  • Online ISBN: 978-94-011-4269-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics