Skip to main content

Direct Navier-Stokes simulations of unsteady vortex breakdown in a swirling jet

  • Chapter
Science and Art Symposium 2000
  • 207 Accesses

Abstract

Three-dimensional, fully unsteady Navier-Stokes simulations are carried out in order to study the mechanisms governing vortex breakdown in swirling jets. For sufficiently large swirl numbers, the initial breakdown is followed by the formation of an axisymmetric, quasisteady velocity field. In the wake region of the primary breakdown bubble, a finite region of absolute instability is observed to exist that gives rise to the formation of a temporally periodic, helical instability, thereby resulting in the familiar’ spiral vortex breakdown structure.’ This finding hence suggests that the transition from axisymmetric to helical breakdown is a manifestation of a global mode instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Althaus, W., Brücker, C., and Weimer, M. 1995 “Breakdown of slender vortices” In: Fluid vortices, ed. S.I. Green, Kluwer Acad. Pub.

    Google Scholar 

  • Benjamin, T.B. 1962 “Theory of the vortex breakdown phenomenon” J. Fluid Mech. 14, 593.

    Article  MathSciNet  ADS  Google Scholar 

  • Billant, P., Chomaz, J.-M., and Huerre, P. 1998 “Experimental study of vortex breakdown in swirling jets” J. Fluid Mech. 376, 183.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Delbende, I., Chomaz, J.-M., and Huerre, P. 1996 “Absolute/convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response” J. Fluid Mech. 355, 229.

    Article  MathSciNet  ADS  Google Scholar 

  • Escudier, M.P. 1988 “Vortex breakdown: observations and explanations” Prog. Aerosp. Sci. 25, 189.

    Article  Google Scholar 

  • Grabowski, W.J. and Berger, S.A. 1976 “Solutions of the Navier-Stokes equations for vortex breakdown” J. Fluid Mech. 75, 525.

    Article  ADS  MATH  Google Scholar 

  • Hall, M.G. 1972“Vortex breakdown” Ann. Rev. Fluid Mech. 4, 195.

    Article  ADS  Google Scholar 

  • Huerre, P. and Monkewitz, P.A. 1990 “Local and global instabilities in spatially developing flows” Ann. Rev. Fluid Mech. 22, 473.

    Article  MathSciNet  ADS  Google Scholar 

  • Kim, J. and Moin, P. 1985 “Application of a fractional-step method to incompressible Navier-Stokes equations” J. Comp. Phys. 59, 308.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Leibovich, S. 1978 “The structure of vortex breakdown” Ann. Rev. Fluid Mech. 10, 221.

    Article  ADS  Google Scholar 

  • Lim, D.W. and Redekopp, L.G. 1998 “Absolute instability conditions for variable density, swirling jet flows” Eur. J. Mech., B/Fluids 17, 165.

    Article  MathSciNet  MATH  Google Scholar 

  • Maxworthy, T. 1972 “On the structure of concentrated, columnar vortices” Astr. Acta 17, 363.

    Google Scholar 

  • Maxworthy, T., Hopfinger, E.J., and Redekopp, L.G. 1985 “Wave motions on vortex cores” J. Fluid Mech. 151, 141.

    Article  ADS  Google Scholar 

  • Orlanski, I. 1976 “A simple boundary condition for unbounded hyperbolic flows” J. Comp. Phys. 21, 251.

    Article  ADS  MATH  Google Scholar 

  • Petitjeans, P. and Wesfreid, J.E. 1997 “Vortex stretching and filaments” Appl. Sci. Res. 55, 279.

    Google Scholar 

  • Sarpkaya, T. 1971 “On stationary and traveling vortex breakdowns” J. Fluid Mech. 45, 545.

    Article  ADS  Google Scholar 

  • Squire, H.B. 1960 Dep. of Aero. Rep. 102, Imperial College, London.

    Google Scholar 

  • Verzicco, R. and Orlandi, P. 1996 “A finite difference scheme for three-dimensional incompressible flows in cylindrical coordinates” J. Comp. Phys. 123, 402.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Werlé, H. 1960 Rech. Aeronaut. 74, 23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, P., Meiburg, E. (2000). Direct Navier-Stokes simulations of unsteady vortex breakdown in a swirling jet. In: Gyr, A., Koumoutsakos, P.D., Burr, U. (eds) Science and Art Symposium 2000. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4177-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4177-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5819-3

  • Online ISBN: 978-94-011-4177-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics