Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 79))

Abstract

The spectra of PTCDA crystals and multiple quantum wells are modeled using Frenkel and charge-transfer excitons in molecular stacks with vibronic coupling to a local mode. They correspond to intra and interchain excitations, respectively, of conjugated polymers with precisely defined chromophores and contacts. Mixed FrenkelCT vibronics with vanishing dispersion at k = 0 lead to a dimer that accounts for absorption and electroabsorption, while fluorescence indicates a delocalized Frenkel exciton with a band width of 0.28 eV. In contrast to polymer films, the model parameters for PTCDA are largely fixed by structural, molecular and solution data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sariciftci, N.S. (ed. 1997) Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model, World Scientific, Singapore.

    Google Scholar 

  2. Skotheim, T.A., Elsenbaumer, R.L., and Reynolds, J.R. (eds. 1998) Handbook of Conducting Polymers, Second Ed., Marcel Dekker, New York.

    Google Scholar 

  3. Forrest, S.R. (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques, Chem. Rev. 97, 1793–1896.

    Article  Google Scholar 

  4. Conwell, E. (1997) Intramolecular Excitons and Intermolecular Polaron Pairs as Primary Photoexcitations in Conjugated Polymers, in Ref. 1, pp. 99–114.

    Google Scholar 

  5. Hennessy, M.H., Soos, Z.G., Pascal, R.A., Jr. and Girlando, A. (1999) Vibronic structure of PTCDA stacks: The exciton-phonon-charge-transfer dimer, Chem. Phys. 245, 199–212.

    Article  Google Scholar 

  6. Halverson, C. and Heeger, A.J. (1993) Two-photon absorption spectrum of oriented trans-polyacetylene, Chem. Phys. Lett. 216, 488–92.

    Article  ADS  Google Scholar 

  7. Kepler, R.G. and Soos, Z.G. (1993) Electronic Properties of Polysilanes: Excitations of s-Conjugated Chains, in T. Kobayshi, (ed.) Relaxation in Polymers, World Scientific, Singapore, pp. 100–133.

    Chapter  Google Scholar 

  8. Gussoni, M., Castiglione, C., and Zerbi, G. (1991) Vibrational spectroscopy of polyconjugated materials: Polyacetylene and polyenes, in R.J.H. Clark and R.E. Hester, (eds.) Advances in Spectroscopy: Spectroscopy of Advanced Materials, Wiley, New York, pp. 251–353.

    Google Scholar 

  9. Soos, Z.G., Mukhopadhyay, D., Painelli, A. and Girlando, A. (1998) tt-Electron Models of Conjugated Polymers: Vibrational and Nonlinear Optical Spectra, in Ref. 2, pp. 165–196.

    Google Scholar 

  10. Ehrenfreund, E., Vardeny, Z., Brafman, O. and Horovitz, B. (1987) Amplitude and phase modes in trans-polyacetylene: Resonant Raman scattering and induced infrared activity, Phys. Rev. B36, 1533–53.

    ADS  Google Scholar 

  11. Soos, Z.G., Etemad, S., Galváo, D.S. and Ramasesha, S. (1992) Fluorescence and topological gap of conjugated phenylene polymers, Chem. Phys. Lett. 194, 34146; Soos, Z.G., Galváo, D.S. and Etemad, S. (1994) Fluorescence and excited-state structure of conjugated polymers, Adv. Mater. 6, 280–87.

    Google Scholar 

  12. Heeger, A.J., Kivelson, S., Schrieffer, J.R. and Su, W.P. (1988), Solitons in Conducting Polymers, Rev. Mod. Phys. 60, 781–850.

    Article  ADS  Google Scholar 

  13. Painelli, A. (1998) Vibronic contribution to static NLO properties: Exact results for the DA dimer, Chem. Phys. Lett. 285, 352–58.

    Article  ADS  Google Scholar 

  14. Soos, Z.G., Hennessy, M.H. and Wen, G. (1997) Perylenes and Polyenes: A second 7t-electron approximation, Chem. Phys. Lett. 274, 189–95.

    Article  ADS  Google Scholar 

  15. McWilliams, P.C.M., Hayden, G.W. and Soos, Z.G. (1991) Theory of even-parity states and two-photon spectra of conjugated polymers, Phys. Rev. B43, 9777–91.

    ADS  Google Scholar 

  16. Bulovic, V., Burrows, P.E., Forrest, S.R., Cronin, A.J. and Thompson, M.E. (1996) Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). 1. Spectrocopic properties of thin films and solutions, Chem. Phys. 210, 1–12.

    Google Scholar 

  17. Gomez, U., Leonhardt, M., Port, H. and Wolf, H.C. (1997) Optical properties of amorphous ultrathin films of perylene derivatives, Chem. Phys. Lett. 268, 1–6.

    Article  ADS  Google Scholar 

  18. Granville, M.F., Kohler, B.E. and Snow, J.B. (1981) Franck-Condon analysis of the l 1 Ag and 1 1 Bu absorption in linear polyenes with two through six double bonds, J. Chem. Phys. 75, 3765–69.

    ADS  Google Scholar 

  19. Hennessy, M.H., Pascal, R.A., Jr. and Soos, Z.G. (1999) Vibronic model of PTCDA stacks: Fluorescence and relaxation energies, SPIE meeting, Denver.

    Google Scholar 

  20. Holstein, T. (1959) Studies of polaron motion. Part 1. The molecular-crystal model, Ann. Phys. 8, 325–42; Emin, D. (1975) Phonon-assisted transition rates. I. Optical-phonon-assisted hopping in solids, Adv. Phys. 24, 307–48.

    Google Scholar 

  21. Wellein, G. and H. Fehske, H. (1997) Polaron band formation in the Holstein model, Phys. Rev. B56, 4513–17; Zhao, Y., Brown, D.W. and Lindenberg, K. (1997) Variational band theory for polarons: mapping polaron structure with the Merrified method, J. Chem. Phys. 106, 5622–30.

    Google Scholar 

  22. Hennessy, M.H. (1999) PhD thesis, Princeton University (unpublished).

    Google Scholar 

  23. Haskal, E.I., Shen, Z., Burrows, P.E. and Forrest, S.R. (1995) Excitons and exciton confinement in crystalline organic thin films grown by organic molecular-beam deposition, Phys. Rev. B51, 4449–62.

    ADS  Google Scholar 

  24. Shen, Z. and Forrest, S.R. (1997) Quantum size effects of charge-transfer excitons in nonpolar molecular organic thin films, Phys. Rev. B55, 10578–92.

    ADS  Google Scholar 

  25. Weiser, G. and Horváth, A. (1997) Electroabsorption spectroscopy or n-conjugated polymers, in Ref. 1, pp. 318–62.

    Google Scholar 

  26. Bulovic, V. and Forrest, S.R. (1996) Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) II. Photocurrent response at low electric fields, Chem. Phys. 210, 13–25.

    Article  Google Scholar 

  27. Kepler, R.G. and Soos, Z.G. (1997) The role of excitons in charge carrier production in polysilanes, in Ref. 1, pp. 363–383.

    Google Scholar 

  28. Hagler, T.W., Pakbac, K. and Heeger, A.J. (1995) Polarized electroabsorption spectrum of highly ordered poly (2-methoxy, 5-(2’ethyl-hexoxy)-p-phenylene vinylene) Phys. Rev. B51, 14199–206.

    ADS  Google Scholar 

  29. Lawrence, B., Torruellas, W.E., Cha, M., Sundheimer, M.L., Stegeman, G.I., Meth, J., Etemad, S. and Baker, G.L. (1994) Identification and role of two-photon excited states in a zt-conjugated polymer, Phys. Rev. Lett. 73, 597–604.

    Article  ADS  Google Scholar 

  30. Soos, Z.G., Hennessy, M.H. and Mukhopadhyay, D. (1997) Correlations in conjugated polymers, in Ref. 1, pp. 1–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Soos, Z.G., Hennessy, M.H. (2000). Modeling PTCDA Spectra and Polymer Excitations. In: Kajzar, F., Agranovich, M.V. (eds) Multiphoton and Light Driven Multielectron Processes in Organics: New Phenomena, Materials and Applications. NATO Science Series, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4056-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4056-0_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6272-2

  • Online ISBN: 978-94-011-4056-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics