Skip to main content

Nanostructured Carbon Coatings

  • Chapter
Nanostructured Films and Coatings

Part of the book series: NATO Science Series ((ASHT,volume 78))

Abstract

This paper provides an overview of nanocrystalline and nanostructured carbon coatings and explores a very broad range of potentially important carbon nanostructures that may be used in future technologies. A new method for the synthesis of nanostructured carbon coatings on the surface of SiC and other metal carbides is described. This method is accomplished through the extraction of metals from carbides by supercritical water or halogens in a high temperature reactor.

This is a versatile technology because a variety of carbon structures can be obtained on the surface of carbides in the same reactor. Not only simple shapes or fibers, but also powders, whiskers and components with complex shapes and surface morphologies can be coated. This technology allows for the control of coating growth on the atomic level, monolayer by monolayer, with high accuracy and controlled structures.

Ordered and disordered graphite, nanoporous carbon (specific surface area of 1000 m2/g and more) and hard carbon can be formed depending on the temperature and gas composition. These carbon coatings can be used as tribological coatings having a low-friction coefficient for a variety of applications, from heavy-load bearings to nanocoatings for MEMS; protective coating for sensors and tools, intermediate thin films for further CVD deposition of diamond, weak coatings on SiC reinforcements for composite materials, coatings on SiC powders for improved sinterability, catalyst supports, molecular membranes for sensors, etc. The structure and properties of carbon coatings obtained on the surface of SiC have been investigated using an array of analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siegel, R.W., Hu, E., and Roco, M.C. (eds.) (1998) R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States. International Technol. Res. Inst: Baltimore.

    Google Scholar 

  2. Gell, M. (1997) Nanostructured Coatings, in R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States. Washington, DC: International Technol. Res. Inst. pp. 124–130.

    Google Scholar 

  3. Erdemir, A., Bindal, C., Fenske, G.R., Zuiker, C., Csensits, R., Krauss, A.R., and Gruen, D.M. (1996) Tribological Characterization of Smooth Diamond Films Grown in Ar-C60 and Ar-CH4 Plasmas, Diam. Films Techn., 6 31–47.

    CAS  Google Scholar 

  4. Bull, S.J. (1995) Tribology of Carbon Coatings: DLC, Diamond and Beyond, Diam. Rel. Mater., 4, 827–835.

    Article  CAS  Google Scholar 

  5. Yasuda, E. (ed.) (1998) Carbon Alloys. Satellite meeting of Carbon ‘88, Nov. 12, 1998. Tokyo Institute of Technology: Tokyo.

    Google Scholar 

  6. Eckert, J. (1999) Partially Disordered Inorganic Materials, MRS Bulletin (May), 3141.

    Google Scholar 

  7. Hirai, H., Kondo, K., Kim, M., Koinuma, H., Kurashima, K., and Bando, Y. (1997) Transparent Nanocrystalline Diamond Ceramics Fabricated from C60 Fullerene by Shock Compression, Appl. Phys. Lett., 71 (20) 3016–3018.

    Article  CAS  Google Scholar 

  8. Rao, A.M., Zhou, P., Wang, K.A., Hager, G.T., Holden, J.M., Wang, Y., Lee, W.-T., Bi, X.-X., Elkund, P.C., Cornett, D.S. (1993) Photoinduced Polymerization of Solid C60 Films, Science, 259 955–957.

    CAS  Google Scholar 

  9. Suchanek, W.L., Yoshimura, M., and Gogotsi, Y.G. (1999) Stability of Fullerenes under Hydrothermal Conditions, J. Mater. Res., 14 (2) 323–326.

    Article  CAS  Google Scholar 

  10. Zhang, M., He, D.W., Ji, L., Wei, B.Q., Wu, D.H., Zhang, X.Y., Xu, Y.F., and Wang, W.K. (1998) Macroscopic Synthesis of Onion-like Graphitic Particles, NanoStructured Materials, 10 (2) 291–297.

    Article  CAS  Google Scholar 

  11. de Jong, K.P. (1999) Synthesis of Supported Catalysts, Current Opinion in Solid State and Materials Science, 4, 55–62.

    Article  Google Scholar 

  12. Murayama, H. and Maeda, T. (1990) A Novel Form of Filamentous Graphite, Nature, 345 791–793.

    Article  CAS  Google Scholar 

  13. Chambers, A., Park, C., Baker, R.T.K., and Rodriguez, N.M. (1998) Hydrogen Storage in Graphite Nanofibers, J. Phys. Chemistry B, 102 (22) 4253–4256.

    Article  CAS  Google Scholar 

  14. Gogotsi, Y.G. and Nickel, K.G. (1998) Formation of Filamentous Carbon from Paraformaldehyde under High Temperatures and Pressures, Carbon, 36 (7), 937–942.

    Article  CAS  Google Scholar 

  15. Gruen, D.M. (1994) Diamonds from Dust, Mater. Tech., 9, 149–151.

    Google Scholar 

  16. Gruen, D.M., Liu, S., Krauss, A.R., and Pan, X. (1994) Buckyball Microwave Plasmas: Fragmentation and Diamond-film Growth, J. Appl. Phys., 75 (3), 1758–1763.

    Article  CAS  Google Scholar 

  17. Redefern, P.C., Horner, D.A., Curtiss, L.A., and Gruen, D.M. (1996) Theoretical Studies of Growth of Diamond (110) from Dicarbon, J. Phys. Chem.,100, 11654–11663.

    Article  Google Scholar 

  18. Regueiro, M.N., Monceau, P., and Hodeau, J.-L. (1992) Crushing Co to Diamond at Room Temperature, Nature, 355, 237–239.

    Article  Google Scholar 

  19. Zarrabian, M., Fourches-Coulon, N., Turban, G., Marhic, C., and Lancin, M. (1997) Observation of Nanocrystalline Diamond in Diamondlike Carbon Films Deposited at Room Temperature in Electron Cyclotron Resonance Plasma, Appl. Phys. Lett., 70 (19), 253–255.

    Article  Google Scholar 

  20. ART (1999) DYLYN® - A New Family of Diamond-Like Coatings, Advanced Refractory Technologies, http://www.art-inc.com/products/coatings.html

    Google Scholar 

  21. Wilson, A.M., Way, B.M., Dahn, J.R., and van Buuren, T. (1995) Nanodispersed Silicon in Pregraphitic Carbons, J. Appl. Phys., 77 (6), 2363–2369.

    Article  CAS  Google Scholar 

  22. Yosida, Y., Shida, S., and Ohsuna, T. (1994) Synthesis, Identification, and Growth Mechanism of Fe, Ni, and Co Crystals Encapsulated in Multiwalled Carbon Nanocages., J. Appl. Phys., 76 (8), 4533–4539.

    Article  CAS  Google Scholar 

  23. Gogotsi, Y.G., Nickel, K.G., Bahloul-Hourlier, D., Merle-Mejean, T., Khomenko, G.E., and Skjerlie, K.P. (1996) Structure of Carbon Produced by Hydrothermal Treatment of ß-SiC Powder, J. Mater. Chem., 6 (4), 595–604.

    Article  CAS  Google Scholar 

  24. Li, Z.Q., Zhang, H.F., Zhang, X.B., Wang, Y.Q., and Wu, X.J. (1998) Nanocrystalline Tungsten Carbide Encapsulated in Carbon Shells, NanoStructured Mater., 10 (2), 179–184.

    Article  CAS  Google Scholar 

  25. Wang, Y. (1994) Encapsulation of Palladium Crystallites in Carbon and Formation of Wormlike Nanostructures, J. Am. Chem. Soc., 116, 397–398.

    Article  CAS  Google Scholar 

  26. Nuhfer, N.T., Graef, M.D., McHenry, M.E., Majetich, S.A., Artman, J.O., and Staley, S.W. (1994) Electron Microscopy Study of Carbon Coated Magnetic Nanoparticles Produced by the Kratschmer-Arc Process, in 13th Internat. Congress on Electron Microscopy. Paris, France: Les editions de physique. pp. 313–314.

    Google Scholar 

  27. Bolton, G.A., Burnell, G., Humphreys, C.J., Yadav, T., and Withers, J.C. (1994) From Carbon Socks to Web-like Wires: The Microstructure of Multi-Metal Filled Carbon Nanostructures by TEM and EELS, in 13th International Congress on Electron Microscopy: Les editions de physique. pp. 321–322.

    Google Scholar 

  28. Libera, J. and Gogotsi, Y., (1999) Characterization of Flame Deposited Carbon Soot Films, University of Illinois at Chicago, Chicago, Nonpublished work.

    Google Scholar 

  29. Zhang, B. and Chen, S. (1996) Morphological Evolution of Diamonds in Combustion Synthesis, J. Appl. Phys., 79 (9), 7241–7247.

    Article  CAS  Google Scholar 

  30. Badzian, A. and Badzian, T. (1993) Diamond Homoepitaxy by Chemical Vapor Deposition, Diamond and Related Materials, 2, 147–157.

    Article  CAS  Google Scholar 

  31. Nemanich, R. J., Glass, J. T., Lucovsky, G. and Shroder, R. E. (1988) Raman Scattering Characterization of Carbon Bonding in Diamond and Diamondlike Films, J. Vac. Sci. Technol. A, 6 (3), 1783–1787.

    Article  CAS  Google Scholar 

  32. Basca, W.S. (1994) Diamond-Like Carbon Bonds, Science, 266, 1256.

    Google Scholar 

  33. Tuinstra, F. and Koenig, J.L. (1970) Raman Spectrum of Graphite, J. Chem. Physics, 53 (3), 1126–1130.

    Article  CAS  Google Scholar 

  34. Pocsik, I., Hundhausen, M., Koos, M., and Ley, L. (1998) Origin of the D peak in the Raman Spectrum of Microcrystalline Graphite., J. Non-Crystalline Solids, 227–230, 1083–1086.

    Article  Google Scholar 

  35. Prawer, S., Nugent, K.W., and Jamieson, D.N. (1998) The Raman Spectrum of Amorphous Diamond, Diamond and Related Materials, 7, 106–110.

    Article  CAS  Google Scholar 

  36. Ersoy, D.A., McNallan, M.J., and Gogotsi, Y. (1999) Characterization of Carbon Produced by High Temperature Chlorination of SiC, in 196th Meeting of The Electrochemical Society. Honolulu, Hawaii: The Electrochemical Society. (in press).

    Google Scholar 

  37. Dresselhaus, M.S., Pimenta, M.A., Marucci, A., Matthews, M.J., Brown, S.D.M., Rao, A.M., Eklund, P.C., Dresselhaus, G., Saito, R., and Endo, M. (1998) Raman Scattering as a Characterization Tool for New Forms of Carbon, Extended Abstracts, International Symposium on Carbon. Tokyo, Japan, Carbon Soc. Japan. pp. 94–95.

    Google Scholar 

  38. Gogotsi, Y.G. and Yoshimura, M. (1994) Formation of Carbon Films on Carbides under Hydrothermal Conditions, Nature, 367, 628–630.

    Article  CAS  Google Scholar 

  39. Gogotsi, Y.G., Jeon, J.D., and McNallan, M.J. (1997) Carbon Coatings on Silicon Carbide by Reaction with Chlorine-Containing Gases, J Mater. Chem., 7 (9), 1841–1848.

    Article  CAS  Google Scholar 

  40. Gogotsi, Y.G. (1994) Hydrothermale Korrosion von SiC - Betrachtung der schädlichen und nützlichen Aspekte, in Korrosion und Verschleiss von keramischen Werkstoffen. Aachen: Deutsche Keramische Gesellschaft. pp. 114–122.

    Google Scholar 

  41. Gqgotsi, Y.G., Kofstad, P., Yoshimura, M., and Nickel, K.G. (1996) Formation of sp - bonded carbon upon hydrothermal treatment of SiC, Diamond and Related Materials, 5, 151–162.

    Article  Google Scholar 

  42. Kraft, T., Nickel, K.G. and Gogotsi, Y.G. (1998) Hydrothermal Degradation of CVD SiC Fibers, J. Mater. Sci., 33, 4357–4364

    Article  CAS  Google Scholar 

  43. Gogotsi, Y.G., Yoshimura, M., Kakihana, M., Kanno, Y., and Shibuya, M. (1995) Hydrothermal Synthesis of Carbon Films on SiC Fibers and Particles, in Ceramic Processing Science and Technology, H. Hausner, G.L. Messing, and S.-I. Hirano (Eds.), Am. Ceram. Soc., Westerville, OH, pp. 243–247.

    Google Scholar 

  44. Roy, R., Ravichandran, D., Badzian, A., and Breval, E. (1996) Attempted Hydrothermal Synthesis of Diamond by Hydrolysis of beta-SiC Powder, Diamond Relat. Mater., 5, 973–976.

    Article  CAS  Google Scholar 

  45. Jacobson, N.S., Gogotsi, Y.G., and Yoshimura, M. (1995) Thermodynamic and Experimental Study of Carbon Formation on Carbides under Hydrothermal Conditions, J. Mater. Chem., 5 (4), 595–601.

    Article  CAS  Google Scholar 

  46. Gogotsi, Y., Welz, S., Daghfal, J., McNallan, M.J., Jeon, I.D., Nickel, K.G., and Kraft, T. (1998) Formation of Carbon Coatings on SiC Fibers by Selective Etching in Halogens and Supercritical Water, Ceram. Eng. Sci. Proc., 19 (3), 87–94.

    CAS  Google Scholar 

  47. Yoshimura, M., Sakai, K., Nakaigawa, Y., Hara, T., Gogotsi, Y., Yamamoto, S., Yashima, M., Kakihana, M., Kanno, Y., and Shibuya, M. (1998) Dense Carbon Coating on Silicon Carbide Fibers by Hydrothermal Treatment, in Extended Abstracts, Internat. Symp. on Carbon. Tokyo, Carbon Soc. of Japan. pp. 552–553.

    Google Scholar 

  48. Gogotsi, Y G. (1997) Formation of Carbon Coatings on Carbide Fibers and Particles by Disproportionation Reactions, in NATO ARW:• Advanced Multilayered and Fiber-Reinforced Composites. Dordrecht: Kluwer. pp. 217–230.

    Google Scholar 

  49. Ersoy, D.A., McNallan, M.J., and Gogotsi, Y. (1998) High Temperature Chlorination of SiC for Preparation of Tribological Carbon Films, in Electrochemical Society Proceedings. Vol. 98–9, Ed. P.Y. Hou et al., pp. 324–333.

    Google Scholar 

  50. McNallan, M., Gogotsi, Y., and Jeon, I.D. (1998) Formation of Carbon Films on Ceramic Carbides by High Temperature Chlorination, in Tribology Issues and Opportunities in MEMS, Ed. B. Bhushan, Kluwer, Dordrecht pp. 559–565.

    Chapter  Google Scholar 

  51. Gogotsi, Y.G., Kofstad, P., Nickel, K.G., and Yoshimura, M. (1996) Formation of spa-Bonded Carbon upon Hydrothermal Treatment of SiC, Diamond and Relat. Mater., 5 (2), 151–162.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gogotsi, Y. (2000). Nanostructured Carbon Coatings. In: Chow, GM., Ovid’ko, I.A., Tsakalakos, T. (eds) Nanostructured Films and Coatings. NATO Science Series, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4052-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4052-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6266-1

  • Online ISBN: 978-94-011-4052-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics