Skip to main content

Part of the book series: Mathematics and Its Applications ((MAEE,volume 53))

  • 1333 Accesses

Abstract

The inequality

$${\sum\limits_{m = 1}^\infty {\sum\limits_{m = 1}^\infty {\frac{{{a_m}{b_n}}}{{m + n}} \leqslant \pi } \left( {\sum\limits_{m = 1}^\infty {a_m^2} } \right)} ^{1/2}}{\left( {\sum\limits_{n = 1}^\infty {b_n^2} } \right)^{1/2}}$$
(1.1)

is known as Hilbert’s double series theorem, or Hilbert’s inequality. It was first proved by Hilbert in his lectures on integral equations, and a proof was published by H. Weyl [1] in his dissertation in 1908. The exact value 7r of the constant (which is best possible) was given by I. Schur [2]. He also gave an integral analogue of (1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weyl, H., Singuläre Integralgleichungen mit besonderer Berücksichtingung des Fourierschen Integraltheorems, Inaugural-Dissertation, Göttingen, 1908.

    Google Scholar 

  2. Schur, I., Bemerkungen zur Theorie der beschränkten Bilinearforrnen mit unendlich vielen Veränderlichen, Journal f. Math. 140 (1911), 1–28.

    MATH  Google Scholar 

  3. Hardy, G. H., Note on a theorem of Hilbert concerning series of positive terms, Proc. London Math. Soc. 232 (1925), Records of Proc. XLV-XLVI.

    Google Scholar 

  4. Hardy, G. H., J. E. Littlewood and G. Pólya, “Inequalities,” Cambridge, 1934.

    Google Scholar 

  5. Fejér, L. and F. Riesz, Über einige funktionentheoretische Ungleichungen, Math. Zeitschr. 11 (1921), 305–314.

    Article  MATH  Google Scholar 

  6. Francis, E. C. and J. E. Littlewood, “Examples in infinite series with solutions,” Cambridge, 1928.

    Google Scholar 

  7. Hardy, G. H., Note on a theorem of Hilbert, Math. Zeitschr. 6 (1920), 314–317.

    Article  MATH  Google Scholar 

  8. Hardy, G. H., J. E. Littlewood and G. Pólya, The maximum of certain bilinear form, Proc. London Math. Soc. 252 (1926), 265–282.

    Article  MATH  Google Scholar 

  9. Mulholland, H. P., Note on Hilbert’s double series theorem, J. London Math. Soc. 3 (1928), 197–199.

    Article  MathSciNet  MATH  Google Scholar 

  10. Mulholland, H. P. —, A further generalisation of Hilbert’s double series theorem, J. London Math. Soc. 6 (1931), 100–106.

    Article  MathSciNet  Google Scholar 

  11. Owen, P. M., A generalisation of Hilbert’s double series theorem, J. London Math. Soc. 5 (1930), 270–272.

    Article  MathSciNet  MATH  Google Scholar 

  12. Pólya, G. and G. Szegö, “Aufgaben und Lehrsätze aus der Analysis, I, II” Berlin, 1925.

    Google Scholar 

  13. Wiener, F., Elementarer Beweis eines Reihensatzes von Herrn Hilbert, Math. Annalen 68 (1910), 361–366.

    Article  MathSciNet  MATH  Google Scholar 

  14. Riesz, F., Über die Randwerte einer analytischen Funktion, Math. Zeitschr. 18 (1923), 87–95.

    Article  MathSciNet  MATH  Google Scholar 

  15. Widder, D. V., An inequality related to one of Hilbert’s, J. London Math. Soc. 4 (1929), 194–198.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hardy, G. H., Remarks in addition to Dr. Widder’s note on inequalities, J. London Math. Soc. 4 (1929), 199–202.

    Article  MATH  Google Scholar 

  17. Mulholland, H. P., Some theorems on Dirichlet series with positive coefficients and related integrals, Proc. London Math. Soc. 292 (1929), 281–292.

    Article  MathSciNet  MATH  Google Scholar 

  18. Mulholland, H. P. —, The generalizations of certain inequality theorems involving powers, Proc. London Math. Soc. 332 (1932), 481–516.

    Article  MathSciNet  Google Scholar 

  19. Hardy, G. H. and J. E. Littlewood, Elementary theorems concerning power series with positive coefficients and moment constants of positive functions, Journal f. Math. 157 (1927), 141–158.

    MATH  Google Scholar 

  20. Szegö, G., On some Hermitian forms associated with two given curves of the complex plane, Trans. Amer. Math. Soc. 40 (1936), 450–461.

    Article  MathSciNet  Google Scholar 

  21. Frazer, H., On the moduli of regular functions, Proc. London Math. Soc, 36 (1934), 532–546.

    Article  MathSciNet  Google Scholar 

  22. Ingham, A. E., A note on Hilber’s inequality, J. London Math. Soc. 11 (1936), 237–240.

    Article  MathSciNet  Google Scholar 

  23. Levin, V., Two remarks on Hilbert’s double series theorem, J. Indian Math. Soc. 11 (1937), 111–115.

    Google Scholar 

  24. Levin, V. —, On the two-parameter extension and analogue of Hilbert’s inequality, J. London Math. Soc. 11 (1936), 119–124.

    Article  Google Scholar 

  25. Levin, V. —, Notes on inequalities IV. On the Hilbert-Riesz inequality, Bull. Acad. Sci. URSS, Sér. Math. Nr 5/6 (1938), 525–540 (Russian).

    Google Scholar 

  26. Pitt, H. R., On an inequality of Hardy and Littlewood, J. London Math. Soc. 13 (1938), 95–101.

    Article  MathSciNet  Google Scholar 

  27. Hardy, G. H. and J. E. Littlewood, An inequality, Math. Zeit. 40 (1935), 1–40.

    Article  MathSciNet  Google Scholar 

  28. Chow, Y. C., On inequaities of Hilbert and Widder, J. London Math. Soc. 14 (1939), 151–154.

    Article  Google Scholar 

  29. Frazer, H., Note on Hilbert’s inequality, J. London Math. Soc. 14 (1946), 7–9.

    Article  MathSciNet  Google Scholar 

  30. Corsey, E. H., H. Frazer and W. W. Sawyer, Empirical data on Hilbert’s inequality, Nature, London 161 (1948), 361.

    Google Scholar 

  31. Taussky, O., A remark concerning the characteristic roots of the finite segments of the Hilbert matrix, Quart. J. Math. (Oxford) 20 (1949), 80–83.

    Article  MathSciNet  MATH  Google Scholar 

  32. Steckin, S. B., On positive bilinear forms, Dokl. Akad. Nauk SSSR (Russian) 65 (1949), 17–20.

    MathSciNet  Google Scholar 

  33. Bonsall, F. F., Inequalities with non-conjugate parameters, Quart. J. Math. Oxford 22 (1951), 135–150.

    Article  MathSciNet  MATH  Google Scholar 

  34. Livingston, A. E., A genralization of an inequality due to Beurling, Pacific J. Math. 4 (1954), 251–257.

    MathSciNet  MATH  Google Scholar 

  35. Hsiang, F. C., An inequality for finite sequences, Math. Scandinav. 5 (1957), 12–14.

    MathSciNet  MATH  Google Scholar 

  36. Yahya, Q. A. M. M., On the generalization of Hilbert’s inequality, Amer. Math. Monthly 72 (1965), 518–520.

    Article  MathSciNet  MATH  Google Scholar 

  37. Sawyer, W. W., On determinants associated with Hilbert’s inequality, J. London Math. Soc. 32 (1957), 133–138.

    Article  MathSciNet  MATH  Google Scholar 

  38. Il’in, V. P., Nekotorye integral’nye neravenstva i ih primenenija v teorii differenciruemyh funkciĭ mnogih peremennyh, Mat. Sb. No. 35496 (1961), 331–380.

    Google Scholar 

  39. De Bruijn, N. G. and H. S. Wilf, On Hilbert’s inequality in n dimensions, Bull. Amer. Math. Soc. 68 (1962), 70–73.

    Article  MathSciNet  MATH  Google Scholar 

  40. Fairthorne, R. A. and J. C. P. Miller, Hilberi’s double series theorem and principal latent roots of the resulting matrix, Math. Comput. 326 (1949), 399–400.

    Article  MathSciNet  Google Scholar 

  41. Godunova, E. K., Obobščenie dvuparemetriceskogo neravenstva Gil’belta, Izv. Vysš. Uč. Zaved. Matematika No. 1 56 (1967), 35–39.

    MathSciNet  Google Scholar 

  42. Redheffer, R., An inequality for the Eilbert transform, Proc. Nat. Acad. Sci. 61 (1968), 810–811.

    Article  MathSciNet  MATH  Google Scholar 

  43. Il’in, V. P., Über eine Inegralgleichung, Mat. Zametki 6 (1969), 139–148 (Russisch).

    MathSciNet  Google Scholar 

  44. Davenport, H. and H. Halberstam, Matematica 13 (1966), 91–96.

    Article  MathSciNet  MATH  Google Scholar 

  45. Matthews, K. R., On an inequality of Davenport and Halberstam, J. London Math. Soc. 42 (1972), 638–642.

    Article  MathSciNet  Google Scholar 

  46. Sysoeva, F. A., Neravenstva Gil’beroskogo tipa dlja funkciĭ s ograničennym smešannymi normami, Moskov. Gos. Ped. Inst. Učen. Zap. 460 (1972), 43–51.

    MathSciNet  Google Scholar 

  47. Sysoeva, F. A. —, An inequality of Hardy-Littlewood type for a product of functions (Russian), in “Differential equations and inequalities,” Moskov. Gos. Ped. Inst. im. Lenina, Moskow, 1973, pp. 43–49.

    Google Scholar 

  48. Sysoeva, F. A. —, Odno neravenstvo tipa Hardi-Litlevuda, Mosk. Gos. Ped. Institut im. Lenina 6 (1978), 136–141.

    Google Scholar 

  49. Walker, P. L., A note on an inequality with non-conjugate parameters, Proc. Edinburgh Math. Soc. 18, ser. II (1973), 293–294.

    Article  MATH  Google Scholar 

  50. Erdélyi, A., An extension of a Hardy-Littlewood-Pólya inequality, Proc. Edinburgh Math. Soc. 21 (1978), 11–15.

    Article  MathSciNet  MATH  Google Scholar 

  51. Fehér, F., A Generalized Schur-Hardy inequality on normed Köthe spaces, in “General Inequalities,” 2, ed. E. F. Beckenbahc, Basel, 1979.

    Google Scholar 

  52. Kufner, A., Zur Hardyschen Ungleichung, in “Sem. Analysis 1982/83,” IMath, Berlin, 1983, pp. 1–18.

    Google Scholar 

  53. VasiĆ, P. M. and J. E. PeČariĆ, Notes on some inequalities for convex functions, Mat. Vesnik 6,1934 (1982), 195-193.

    Google Scholar 

  54. Redheffer, R. M. and P. Volkmann, Über einer Ungleichung von Schur, Mh. Math. 95 (1983), 137–148.

    Article  MathSciNet  MATH  Google Scholar 

  55. Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math. 118 (1983), 349–374.

    Article  MathSciNet  MATH  Google Scholar 

  56. Wong, M. W., A lower bound for the spectrum of a one-dimensional pseudo-differential operator, Math. Proc. Camb. Phil. Soc. 103 (1988), 317–320.

    Article  Google Scholar 

  57. MitrinoviĆ, D. S. and J. E. PeČariĆ, On inequalities of Hilbert and Widder, (to appear in Proc. Edinburgh Math. Soc).

    Google Scholar 

  58. MitrinoviĆ, D. S. —, A note on an inequality with nonconjugate parameters, (to appear in Anzeig. Öster. Akad. Wiss.).

    Google Scholar 

  59. Beesack, P. R., D. S. MitrinoviĆ, and P. M. VasiĆ, Integral inqualities, (the manuscript not achieved and not published — we used this manuscript in writing sections 10 and 14).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitrinović, D.S., Pečarić, J.E., Fink, A.M. (1991). Hilbert’s and Related Inequalities. In: Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3562-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3562-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5578-9

  • Online ISBN: 978-94-011-3562-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics