Skip to main content

Semiconductor Gas Sensors Based on SnO2 Thick Films

  • Chapter
Gas Sensors

Abstract

Some physical and chemical aspects about the behaviour of semiconductor gas sensors are discussed. Discussion is restricted to sintered SnO2 which is usually in the form of a thick film. Since we have concentrated on electrical studies of the response characteristics of SnO2 thick films in our laboratory, the discussion also has an emphasis on the transducing properties (conductance signals) of the sensor. Initially, some electrical properties of SnO2 are reviewed. Subsequently a description of the general form of conductance in sintered samples is presented. From the chemical point of view, the central role of the oxygen ions, O<Stack><Subscript>2</Subscript><Superscript>−</Superscript></Stack> and O, on the SnO2 surface is analysed in connection with the conductance response at a constant temperature and after quick temperature changes. The role of the adsorption/desorption mechanism is emphasized. Some discussion about the surface defect mechanism is also included. The use of catalysts and promoters to improve sensor properties, together with some peculiar effects related to electrode materials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Romppainen. Electrical Studies on the Response Characteristics of Tin Dioxide-based Semiconductor Gas Sensors. Acta Univ. Oui. C 47, Oulu, Finland, 1988.

    Google Scholar 

  2. G. Heiland. Homogeneous Semiconducting Gas Sensors. Sensors and Actuators 2 (1982) 343–361.

    CAS  Google Scholar 

  3. A. A. Saaman and P. Bergveld. A Classification of Chemically Sensitive Semiconductor Devices. Sensors and Actuators 7 (1985) 75–87.

    CAS  Google Scholar 

  4. P. T. Moseley. Materials Selection for Semiconductor Gas Sensors. Eurosensors conference, Rome, Italy, 30 Sept. — 2. Oct., 1991.

    Google Scholar 

  5. D. E. Williams. Conduction and Gas Response of Semiconductor Gas Sensors, in  Solid State Gas Sensors. Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, pp. 71–123.

    Google Scholar 

  6. W. Hagen, R. E. Lambrich, and J. Lagois. Semiconducting Gas Sensors. Adv. Solid State Physics 23 (1983) 259–274.

    CAS  Google Scholar 

  7. S. R. Morrison. Semiconductor Gas Sensors. Sensors and Actuators 2 (1982) 329–341.

    CAS  Google Scholar 

  8. S. R. Morrison. The Chemical Physics of Surfaces. Plenum Press, N.Y. and London, 1977.

    Google Scholar 

  9. M. J. Madou and S. R. Morrison. Chemical Sensing with Solid State Devices. Academic Press, San Diego and London, 1989.

    Google Scholar 

  10. P. T. Moseley and D. E. Williams. Oxygen Surface Species on Semiconducting Oxides, in Techniques and Mechanisms in Gas Sensing. Eds. P. T. Moseley, J. O. W. Norris, and D. E. Williams, Adam Hilger, Bristol, 1991, pp. 46–60.

    Google Scholar 

  11. G. Heiland and D. Kohl. Physical and Chemical Aspects of Oxidic Semiconductor Gas Sensors, in Chemical Sensor Technology, Vol. I. Ed. T. Seiyama, Kodansha, Tokyo and Elsevier, Amsterdam, 1988, pp. 15–38.

    Google Scholar 

  12. D. Kohl. Surface Processes in the Detection of Reducing Gases with SnO2-based Devices. Sensors and Actuators 18 (1989) 71–113.

    CAS  Google Scholar 

  13. N. Yamazoe. New Approaches for Improving Semiconductor Gas Sensors. Proc. 3rd Int. Meet. Chem. Sensors, Cleveland, OH, USA, Sept. 24–26, 1990, pp. 3–8.

    Google Scholar 

  14. S. R. Morrison. Selectivity in Semiconductor Sensors. Proc. 2nd Int. Meet. Chem. Sensors, Bordeaux, France, July 7–10, 1986, pp. 39–48.

    Google Scholar 

  15. A. Ylinampa. Diploma thesis (in Finnish), University of Oulu, Oulu, Finland, 1991.

    Google Scholar 

  16. R. Lalauze, N. Bui, and C. Pijolat. Interpretation of the Electrical Properties of SnO 2 Gas Sensor After Treatment with Sulphur Dioxide. Sensors and Actuators 6 (1984) 119–125.

    CAS  Google Scholar 

  17. P. Romppainen, V. Lantto, and S. Leppävuori. Effect of Water Vapour on the CO Response Behaviour of Tin Dioxide Sensors in Constant Temperature and Temperature-pulsed Modes of Operation. Sensors and Actuators B1 (1990) 73–78.

    CAS  Google Scholar 

  18. J. Robertson. Defect Levels of SnO2. Phys. Rev. B 30 (1984) 3520–3522.

    CAS  Google Scholar 

  19. V. Lantto, P. Romppainen, and S. Leppävuori. The Response of an SnO2 Gas Sensor to CO and NO Alone and in Combination. Rep. S96, Department of Electrical Engineering, University of Oulu, Oulu, Finland, 1987.

    Google Scholar 

  20. N. Yamazoe, Y. Kurokawa, and T. Seiyama. Effects of Additives on Semiconductor Gas Sensors. Sensors and Actuators 4 (1983) 283-289.

    CAS  Google Scholar 

  21. J. O. W. Norris. The Role of Precious Metal Catalysts, in Solid State Gas Sensors. Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, pp. 124–138.

    Google Scholar 

  22. P. Romppainen and V. Lantto. Design and Construction of an Experimental Set-up for Semiconductor Gas Sensor Studies. Rep. S93, Department of Electrical Engineering, University of Oulu, Oulu, Finland, 1987.

    Google Scholar 

  23. J. Robertson. Electronic Structure of SnO2, GeO2, PbO2, TeO2, and MgF2. J. Phys. C 12 (1979) 4767–4776.

    CAS  Google Scholar 

  24. F. J. Arlinghaus. Energy Bands in Stannic Oxide (SnO2). J. Phys. Chem. Solids 35 (1974) 931–935.

    CAS  Google Scholar 

  25. J. L. Jacquemin, C. Alibert, and G. Bordure. Electronic Energy Band Calculations in SnO 2 . Solid State Commun. 10 (1972) 1295–1298.

    CAS  Google Scholar 

  26. T. Agekyan. Spectroscopic Properties of Semiconductor Crystals with Direct Forbidden Energy Gap. Phys. Status Solidi 43 (1977) 11–42.

    CAS  Google Scholar 

  27. S. Munnix and M. Schmeits. Electronic Structure of Tin Dioxide Surfaces. Phys. Rev. B 27 (1983) 7624–7635.

    CAS  Google Scholar 

  28. D. H. Lee and J. D. Joannopoulos. Renormalization Scheme for the Transfer-matrix Method and the Surfaces of Wurtzite ZnO. Phys. Rev. B 24 (1981) 6899–6907.

    CAS  Google Scholar 

  29. S. Munnix and M. Schmeits. Electronic Structure of Point Defects on Oxide Surfaces. Phys. Rev. B 33 (1986) 4136–4144.

    CAS  Google Scholar 

  30. S. Munnix and M. Schmeits. Electronic Structure of Oxygen Vacancies on TiO2 (110) and SnO2 (110) Surfaces, J. Vac. Sci. Technol. A5 (1987) 910–913.

    Google Scholar 

  31. W. Göpel, R. S. Bauer, and G. Hansson. Ultraviolet Photoemission Studies of Chemisorption and Point Defect Formation on ZnO Non-polar Surfaces. Surface Sci. 99 (1980) 138–158.

    Google Scholar 

  32. C. G. Fonstad and R. H. Rediker. Electrical Properties of High-quality Stannic Oxide Crystals. J. Appl. Phys. 42 (1971) 2911–2918.

    CAS  Google Scholar 

  33. S. Samson and C. G. Fonstad. Defect Structure and Electronic Donor Levels in Stannic Oxide Crystals. J. Appl. Phys. 44 (1973) 4618–4621.

    CAS  Google Scholar 

  34. Z. M. Jarzebski and J. P. Marton. Physical Properties of SnO2 Materials: II Electrical Properties. J. Electrochem. Soc. 123 (1976) 2996–3106.

    Google Scholar 

  35. J. Bardeen and W. Shockley. Deformation Potentials and Mobilities in Non-polar Crystals. Phys. Rev. 80 (1950) 72–82.

    CAS  Google Scholar 

  36. M. Nagasawa and S. Shionoya. Properties of Oxidized SnO 2 Single Crystals. Japan J. Appl. Phys. 10 (1971) 727–731.

    CAS  Google Scholar 

  37. S. Semancik and T. B. Fryberg. Model Studies of Tin Oxide Based Gas Sensors. AIChe. Symp. Ser. (267) 85 (1989) 46–51.

    CAS  Google Scholar 

  38. S. Semancik and T. B. Fryberg. Fundamental Studies of Gas Sensor Response Mechanisms: Palladium on SnO2 (110). Proc. 3rd Int. Meet. Chem. Sensors, Cleveland, OH, USA, Sept. 24–26, 1990, pp. 23–26.

    Google Scholar 

  39. H. Jacobs, W. Mokwa, D. Kohl, and G. Heiland. Characterization of Structure and Reactivity of ZnO and SnO 2 Supported Pd Catalysts. Vacuum 33 (1983) 869–870.

    Google Scholar 

  40. P. T. Moseley, A. M. Stoneham, and D. E. Williams. Oxide Semiconductors: Patterns of Gas Response Behaviour According to Material Type, in Techniques and Mechanisms in Gas Sensing. Eds. P. T. Moseley, J. O. W. Norris, and D. E. Williams, Adam Hilger, Bristol, 1991, pp. 108–138.

    Google Scholar 

  41. J. Mizsei and V. Lantto. Simultaneous Response of Work Function and Resistivity of Some SnO 2 -based Samples to H 2 and H 2 S. Sensors and Actuators B 4 (1991) 163–168.

    Google Scholar 

  42. S. Semancik and D. F. Cox. Fundamental Characterization of Clean and Gas-dosed Tin Oxide. Proc. 2nd Int. Meet. Chem. Sensors, Bordeaux, France, July 7–10, 1986, pp. 226–229.

    Google Scholar 

  43. S. R. Morrison. Measurement of Surface State Energy Levels of One-equivalent Adsorbates on ZnO. Surface Sci. 27 (1971) 586–604.

    CAS  Google Scholar 

  44. E. I. Levin. Percolation Nonohmic Conductivity of Polycrystalline Semiconductors. Sov. Phys. Semicond. 18 (1984) 158–162.

    Google Scholar 

  45. P. Romppainen and V. Lantto. The Effect of Microstructure on the Height of Potential Energy Barriers in Porous Tin Dioxide Gas Sensors. J. Appl. Phys. 63 (1988) 5159–5165.

    CAS  Google Scholar 

  46. J. F. McAleer, P. T. Moseley, J. O. W. Norris, and D. E. Williams. Tin Dioxide Gas Sensors. J. Chem. Soc, Faraday Trans. I 83 (1987) 1326–1346.

    Google Scholar 

  47. Z. M. Jarzebski and J. P. Marton. Physical Properties of SnO 2 Materials: I Preparation and Defect Structure. J. Electrochem. Soc. 123 (1976) 1996–2056.

    Google Scholar 

  48. A. M. Stoneham. Oxide Surfaces: The Basic Processes of Sensor Behaviour, in Solid State Gas Sensors. Eds. P. T. Moseley and B. C. Tofield, Adam Hilger, Bristol, 1987, pp. 151–168.

    Google Scholar 

  49. J. Sinkkonen. DC Conductivity of a Random Barrier Network. Phys. Status Solidi b 102 (1980) 621–627.

    CAS  Google Scholar 

  50. L. Pirttiaho. Calculation of the Effective Activation Energy of the Potential Barrier Network. Diploma thesis (in Finnish), University of Oulu, Oulu, Finland, 1991.

    Google Scholar 

  51. J. Mizsei and J. Harsanyi. Resistivity and Work Function Measurements on Pd-doped SnO 2 Surface. Sensors and Actuators 4 (1983) 397–402.

    CAS  Google Scholar 

  52. V. Lantto, P. Romppainen, T. S. Rantala, and S. Leppävuori. Equilibrium and Non-equilibrium Conductance Response of Sintered SnO 2 Samples to H 2 S. Sensors and Actuators B 4 (1991) 451–455.

    Google Scholar 

  53. D. J. Dwyer, S. Kennedy, and S. Marohn. Surface Chemistry of Solid State Gas Sensors: H 2 S on WO 3 Films. Proc. 3rd Int. Meet. Chem. Sensors, Cleveland, OH, USA, Sept. 24–26, 1990, pp. 350–353.

    Google Scholar 

  54. V. Lantto, P. Romppainen, and S. Leppävuori. A Study of the Temperature Dependence of the Barrier Energy in Porous Tin Dioxide. Sensors and Actuators 14 (1988) 149–163.

    CAS  Google Scholar 

  55. P. K. Clifford. Mechanisms of Gas Detection by Metal Oxide Surfaces. Ph.D. Dissertation, Carnegie-Mellon University, Pittsburgh, USA, July, 1981. (Printed by University Microfilms International, Ann Arbor, MI48106, USA, 1985.)

    Google Scholar 

  56. P. K. Clifford and D. T. Tuma. Characteristics of Semiconductor Gas Sensors: II Transient Response to Temperature Change. Sensors and Actuators 3 (1983) 255–281.

    CAS  Google Scholar 

  57. Figaro Engineering Inc., Product Information, 1–5–3 Senbanishi, Minoo City, Osaka 652, Japan.

    Google Scholar 

  58. P. Romppainen, V. Lantto, J. Väänänen, and S. Leppävuori. Some Aspects of Doping SnO 2 with Antimony and Aluminium. Proceedings of the XXII Annual Conference of the Finnish Physical Society, Jyväskylä, Finland, March 24–26, 1988.

    Google Scholar 

  59. E. de Fresart, J. Darville, and J. M. Gilles. Influence of the Surface Reconstruction on the Work Function and Surface Conductance of (110) SnO 2 . Appl. Surf. Sci. 11/12 (1982) 637–651.

    Google Scholar 

  60. W. Göpel. Oxygen Interaction of Stoichiometric and Non-stoichiometric ZnO Prismatic Surfaces. Surface Sci. 62 (1977) 165–182.

    Google Scholar 

  61. G. Martinelli and M. C. Carotta. Sensitivity to Reducing Gases as a Function of Energy Barrier in SnO 2 Thick Film Gas Sensors. Eurosensors V Conference, Rome, Italy, 30 Sept. — 2. Oct., 1991.

    Google Scholar 

  62. Y. M. Cross and D. R. Pyke. An X-ray Photoelectron Spectroscopy Study of the Surface Composition of Tin and Antimony Mixed Metal Oxide Catalysts. Advances in Catalysis 30 (1981) 97–131.

    Google Scholar 

  63. S.-C. Chang. Sensing Mechanisms of Thin Film Tin Oxide. Proc. Int. Meet. Chem. Sensors, Fukuoka, Japan. Eds. T. Seiyama et. al., Kodansha, Tokyo/Elsevier, Amsterdam, 1983, pp. 78–83.

    Google Scholar 

  64. H. Chon and J. Pajares, Hall Effect Studies on Oxygen Chemisorption on Zinc Oxide. J. Catal. 14 (1969) 257–260.

    CAS  Google Scholar 

  65. K. Tanaka and G. Blyholder. Adsorbed Species of Oxygen on Dark and on Illuminated Zinc Oxide. J. Chem. Soc. Chem. Commun. (1971) 1343–1344.

    Google Scholar 

  66. W. Göpel. Reactions of Oxygen with ZnO-l010 Surfaces. J. Vac. Sci. Technol. 15 (1978) 1298–1310.

    Google Scholar 

  67. V. A. Smyntyna. The Chemisorption Forms and the Centre Nature of Oxygen Chemisorption on the CdSe Thin-film Surfaces. Nuovo Cimento 63B, N2 (1981) 642–650.

    Google Scholar 

  68. P. B. Weisz. Effect of Electronic Charge Transfer Between Adsorbate and Solid on Chemisorption and Catalysis. J. Chem. Phys. 21 (1953) 1531–1538.

    CAS  Google Scholar 

  69. T. S. Rantala, T. T. Rantala, and V. Lantto. Rate Equation Simulation of the Height of Schottky Barriers at the Surface of Oxide Semiconductors. (To be published.)

    Google Scholar 

  70. V. Lantto and P. Romppainen. Electrical Studies on the Reactions of CO with Different Oxygen Species on SnO 2 Surfaces. Surface Sci. 192 (1987) 243–264.

    CAS  Google Scholar 

  71. V. Lantto, P. Romppainen, and S. Leppävuori. Response Studies of Some Semiconductor Gas Sensors under Different Experimental Conditions. Sensors and Actuators 15 (1988) 347–357.

    CAS  Google Scholar 

  72. S. R. Morrison. Mechanism of Semiconductor Gas Sensor Operation. Sensors and Actuators 11 (1987) 283–287.

    CAS  Google Scholar 

  73. K. D. Schierbaum, U. Weimar, W. Göpel, and R. Kowalkowski. Conductance, Work Function and Catalytic Activity of SnO 2 -based Gas Sensors. Sensors and Actuators B 3 (1991) 205–214.

    Google Scholar 

  74. H. Windischman and P. Mark. A Model for the Operation of a Thin-film SnO x Conductance-modulation Carbon Monoxide Sensor. J. Electrochem. Soc. 126 (1979) 672–633.

    Google Scholar 

  75. P. T. Moseley. Materials for Sensing Flammable and Toxic Gases, in Electronic Materials from Silicon to Organics. Eds. L. S. Miller and J. B. Mullin, Plenum Press, New York, 1991, pp. 485–498.

    Google Scholar 

  76. G. Sberveglieri, S. Groppelli, P. Nelli, V. Lantto, H. Torvela, P. Romppainen, and S. Leppävuori. Response to Nitric Oxide of Thin and Thick SnO 2 Films Containing Trivalent Additives. Sensors and Actuators B 1 (1990) 79–82.

    Google Scholar 

  77. A. Heilmann, V. Lantto, M. Müller, and C. Hamann. NO 2 Monitoring as an Air Pollutant Using Lead Phthalocyanine Thin Film Sensors. (Accepted for publication in Sensors and Actuators.)

    Google Scholar 

  78. V. Lantto and P. Romppainen. Response of Some SnO 2 Gas Sensors to H 2 S after Quick Cooling. J. Electrochem. Soc. 135 (1988) 2550–2556.

    CAS  Google Scholar 

  79. C. Pijolat and R. Lalauze. Influence of Adsorbed Hydroxyl Species on the Electrical Conductance of SnO 2 . Sensors and Actuators 14 (1988) 27–33.

    CAS  Google Scholar 

  80. A. Harkoma-Mattila, T. S. Rantala, V. Lantto, and S. Leppävuori. Sensitivity and Selectivity of Doped SnO 2 Thick-film Sensors to H 2 S in the Constant and Pulsed-temperature Modes. Sensors and Actuators B 6 (1992) 248–252.

    Google Scholar 

  81. P. K. Clifford and D. T. Tuma. Characteristics of Semiconductor Gas Sensors: I Steady State Behaviour. Sensors and Actuators 3 (1983) 233–254.

    CAS  Google Scholar 

  82. P. Romppainen, H. Torvela, J. Väänänen, and S. Leppävuori. Effect of CH 4 , SO 2 , and NO on the CO Response of an SnO 2 -based Thick-film Gas Sensor. Sensors and Actuators 8 (1985) 271–279.

    CAS  Google Scholar 

  83. J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, and B. C. Tofield. Tin Dioxide Gas Sensors, Part 2 — The Role of Surface Additives. J. Chem. Soc, Faraday Trans. I 84 (1988) 441–457.

    Google Scholar 

  84. R. Lalauze, J. C. Le Thiesse, C. Pijolat, and M. Soustelle. SnO 2 Gas Sensors. Effect of SO 2 Treatment on the Electrical Properties of SnO 2 . Solid State Ionics 12 (1984) 453–457.

    CAS  Google Scholar 

  85. E. M. Logothetis, M. D. Hurley, W. J. Kaiser, and Y. C. Yao. Selective Methane Sensors. Proc. 2nd Int. Meet. Chem. Sensors, Bordeaux, France, July 7–10, 1986, pp. 175–178.

    Google Scholar 

  86. N. Komori, S. Sakai, and K. Komatsu. Sintered SnO 2 Sensor for Methane. Proc. Int. Meet. Chem. Sensors, Fukuoka, Japan. Eds. T. Seiyama et. al., Kodamsha, Tokyo/Elsevier, Amsterdam, 1983, pp. 57–61.

    Google Scholar 

  87. H. Eicker. Method and Apparatus for Determining the Concentration of One Gaseous Component in a Mixture of Gases. U.S. patent 4012692 (Mar. 15, 1977).

    Google Scholar 

  88. G. N. Advani, R. Beard, and L. Nanis. Gas Measurement Method. U.S. patent 4399684 (Aug. 23, 1983).

    Google Scholar 

  89. H. D. Le Vine. Method and Apparatus for Operating a Gas Sensor. U.S. patent 3906473 (Sept. 16, 1975).

    Google Scholar 

  90. S. R. Morrison. Semiconducting-oxide Chemical Sensors. IEEE Circuits Devices 7 (1991) 32–35.

    Google Scholar 

  91. P. Van Geloven, M. Honore, J. Roggen, and R. Mertens. A Thermal Model Helpful to Explain Power Law Behaviour of Tin Oxide Gas Sensors. Proc. 3nd Int. Meet. Chem. Sensors, Cleveland, OH, USA, Sept. 24–26, 1990, pp. 27–30.

    Google Scholar 

  92. T. Wolkenstein. Electronic Processes on Semiconductor Surfaces During Chemisorption. (Translated from Russian by E. M. Yankovskii and translation edited in part by Roy Morrison.) Consultants Bureau, New York (A Division of Plenum Publishing Corporation), 1991.

    Google Scholar 

  93. R. Lalauze and C. Pijolat. A New Approach to Selective Detection of Gas by an SnO 2 Solid-state Sensor. Sensors and Actuators 5 (1984) 55–63.

    CAS  Google Scholar 

  94. K. Takahata. Tin Dioxide Sensors — Development and Applications, in Chemical Sensor Technology Vol. I. Ed. T. Seiyama, Kodansha Tokyo/Elsevier Amsterdam, 1988, pp. 39–55.

    Google Scholar 

  95. V. Lantto and J. Mizsei. H 2 S Monitoring as an Air Pollutant with Silver-doped SnO 2 Thin-film Sensors. Sensors and Actuators B 5 (1991) 21–25.

    Google Scholar 

  96. N. Yamazoe, Y. Kurokawa and T. Seiyama. Catalytic Sensitization of SnO 2 Sensor. Proc. Int. Meet. Chem. Sensors, Fukuoka, Japan. Eds. T. Seiyama et. al., Kodansha, Tokyo/Elsevier, Amsterdam, 1983, pp. 35–40.

    Google Scholar 

  97. J. Mizsei and V. Lantto. Air Pollution Monitoring with a Semiconductor Gas Sensor Array System. Sensors and Actuators B 6 (1992) 223–227.

    Google Scholar 

  98. H. Torvela, P. Romppainen, and S. Leppävuori. Detection of CO Levels in Combustion Gases by Thick-film SnO 2 sensor. Sensors and Actuators 14 (1988) 19–25.

    CAS  Google Scholar 

  99. A. Harkoma, H. Torvela, P. Romppainen, and S. Leppävuori. Detection of CO Levels by Semiconductor Gas Sensors in Combustion Gases Containing NO. Combust. Sci. and Tech. 62 (1988) 21–29.

    CAS  Google Scholar 

  100. H. Torvela, A. Harkoma, and S. Leppävuori. Detection of the Concentration of CO Using SnO 2 , Gas Sensors in Combustion Gases of Different Fuels. Sensors and Actuators 17 (1989) 369–375.

    CAS  Google Scholar 

  101. N. Murakami, Y. Matsuura, K. Takahata, and K. Ihokura. Effect of Pd Additive on a SnO 2 Gas Sensor for CO Detection in Combustion Gas. Proc. 2nd Int. Meet. Chem. Sensors, Bordeaux, France, July 7–10, 1986, pp. 268–269.

    Google Scholar 

  102. K. Tanaka, S. Morimoto, S. Sonoda, S. Matsuura, K. Moriya, and M. Egashira. Combustion Monitoring Sensor Using Tin Dioxide Semiconductor. Sensors and Actuators B 3 (1991) 247–253.

    Google Scholar 

  103. H. Torvela, J. Huusko, and V. Lantto. Reduction of the Interference Caused by NO and SO 2 in the CO Response of Pd-catalysed SnO 2 Combustion Gas Sensors. Sensors and Actuators B 4 (1991) 479–484.

    Google Scholar 

  104. J. Huusko, H. Torvela, and V. Lantto. Detection of NO and Unburnt Gases in Combustion Processes Using SnO 2 Sensors Operated at Different Temperatures. Sensors and Actuators B 7 (1992) 700–703.

    Google Scholar 

  105. A. Accorsi and J. Bernard. Resistivity Oscillation During Catalytic Oxidation of Carbon Monoxide on Pt/SnO 2 . Proc. 2nd Int. Meet. Chem. Sensors, Bordeaux, France, July 7–10, 1986, pp. 205–208.

    Google Scholar 

  106. H. Torvela, V. Lantto, and S. Leppävuori. Experimental Studies on the DC-oscillations in Mixed Oxides Containing Palladium. Proceedings of the XXI Annual Conference of the Finnish Physical Society, Mariehamn, Finland, February 5–7, 1987.

    Google Scholar 

  107. H. Torvela. Feasibility of Using Oscillatory Catalytic Oxidation Phenomenon for Selective Carbon Monoxide Sensing. Active and Passive Elec. Comp. 12 (1987) 291–301.

    Google Scholar 

  108. S. Kanefusa, M. Nitta, and M. Haradome. Oscillation Phenomenon in a SnO 2 -based Gas Sensor. Proc. Int. Meet. Chem. Sensors, Fukuoka, Japan. Eds. T. Seiyama et al., Kodansha, Tokyo/Elsevier, Amsterdam, 1983, pp. 84–89.

    Google Scholar 

  109. E. M. Logothetis and R. E. Hetrick. Oscillations in the Electrical Resistivity of TiO 2 Induced by Solid/Gas Interactions. Solid State Commun. 31 (1979) 167–171.

    CAS  Google Scholar 

  110. R. C. Yeates, J. E. Turner, A. J. Gellman, and G. A. Somorjai. The Oscillatory Behavior of the CO Oxidation Reaction at Atmospheric Pressure over Platinum Single Crystals: Surface Analysis and Pressure Dependent Mechanisms. Surface Sci. 149 (1985) 175–190.

    CAS  Google Scholar 

  111. A. Ylinampa and V. Lantto. Some Effects of Electrodes on the Response Characteristics of Doped SnO 2 Gas Sensors. (To be published.)

    Google Scholar 

  112. V. Lantto and T. S. Rantala. Equilibrium and Non-equilibrium Conductance Response of Sintered SnO 2 Samples to CO. Sensors and Actuators B 5 (1991) 103–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lantto, V. (1992). Semiconductor Gas Sensors Based on SnO2 Thick Films. In: Sberveglieri, G. (eds) Gas Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2737-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2737-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5214-6

  • Online ISBN: 978-94-011-2737-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics