Skip to main content

Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes

  • Chapter
Book cover Dissolved Organic Matter in Lacustrine Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 73))

Abstract

Effects of natural factors (drought and forest fire), and experimental perturbations (fertilization and acidification) on dissolved organic carbon (DOC) concentrations and ratios to other nutrients in lakes of the Experimental Lakes Area are examined using data obtained over a period of 20 years. DOC concentration, and the ratio of dissolved iron to DOC in lakes of the area were strongly correlated with the relative size of the catchment to the lake.

DOC in many lakes of the area declined over 20 years, due to increased water residence times caused by increasing average temperature and decreasing precipitation. Inexplicably, Lake 382 was an exception to this general observation. Acidification of Lake 302S to below pH 5.0 also caused DOC to decrease. The lesser acidification of Lake 223 (min. pH 5.0) did not significantly affect DOC. Experimental acidification of a small peatland also caused a temporary decline in DOC concentrations in bog pools. Changes in DOC appear to affect the availability of mercury for methylation. Addition of aluminum to a small acidic lake caused a two-fold decline in DOC.

Fertilization of Lake 227 caused a considerable increase in DOC, and in ratios of DOC to other carbon fractions. New stable ratios did not occur for a decade after fertilization began. Lake 226N, fertilized at a lower rate, showed similar but less pronounced increases in DOC, but the experiment was terminated after only eight years. Phosphorus fertilization caused a dramatic increase in the lability of the DOC pool in Lake 226N, where the autochthonous carbon pool was labelled with DI14C. A large increase in autochthonous production of DOC and increased microbial utilization of allochthonous DOC appear to have occurred.

DOC concentrations in streams were higher after drought, but concentrations were unrelated to flow volume during wet periods. Due to lower streamflows in drought years, annual yields of DOC from streams were unaffected by drought.

Mesocosm experiments showed that DOC’s primary effect on iron is to inhibit sedimentation, possibly by suppressing flocculation reactions that are known to control the cycles of many metals.

The changes in DOC in lakes brought about by changes in water renewal, acidification, or other perturbations can have major effects on the cycles of metals, lake transparency, and phytoplankton production and standing crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, W., C. R. O’Melia & J. K. Edzwald, 1984. Colloidal stability of particles in lakes: Measurement and significance. Wat. Sci. Tech. 17: 701–712.

    Google Scholar 

  • Arvola, L., 1984. Vertical distribution of primary production and phytoplankton in two small lakes with different humic concentration in southern Finland. Holarct. Ecol. 7: 390–398.

    CAS  Google Scholar 

  • Bayley, S. E., D. H. Vitt, R. W. Newbury, K. G. Beaty, R. Behr & C. Miller, 1987. Experimental acidification of a Sphagnum-dominated peatland: first year results. Can. J. Fish, aquat. Sci. 44 (Suppl. 1): 194–205.

    Article  CAS  Google Scholar 

  • Bayley, S. E., D. W. Schindler, K. G. Beaty, B. R. Parker & M. P. Stainton, 1992. Effects of multiple fires on nutrient yields from streams draining boreal forest and fen watersheds: nitrogen and phosphorus. Can. J. Fish. Aquat. Sci. (in press).

    Google Scholar 

  • Birge, E. A. & C. Juday, 1934. Particulate and dissolved organic matter in inland lakes. Ecol. Monogr. 4: 440–474.

    Article  CAS  Google Scholar 

  • Bower, P. M., 1981. Addition of radiocarbon to the mixed layers of two small lakes: Primary production, gas exchange, sedimentation, and carbon budget. Ph.D. thesis, Columbia University, New York. 238 pp.

    Google Scholar 

  • Bower, P. M. & D. McCorkle, 1980. Limnocorral radiocarbon spike: Gas exchange, photo synthetic uptake and carbon budget. Can. J. Fish. aquat. Sci. 37: 464–471.

    Article  CAS  Google Scholar 

  • Bower, P. M., C. A. Kelly, E. J. Fee, J. A. Shearer, D. R. De Clercq & D. W. Schindler, 1987. Simultaneous measurement of primary production of whole-lake and bottle radiocarbon additions. Limnol. Oceanogr. 32: 299–312.

    Article  CAS  Google Scholar 

  • Brunskill, G. J. & D. W. Schindler, 1971. Geography and bathymetry of selected lake basins, Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd Can. 28: 139–155.

    Article  Google Scholar 

  • Brunskill, G. J. & P. Wilkinson, 1987. Annual supply of 238U, 234U, 230Th, 226Ra, 210Pb, 210Po, and 232Th to Lake 239 (Experimental Lake Area, Ontario) from terrestrial and atmospheric sources. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 215–230.

    Article  CAS  Google Scholar 

  • Cooper, W. B. & D. R. S. Lean, 1989. Hydrogen peroxide production in a north-temperate lake. Envir. Sci. Technol. 23: 1425–1428.

    Article  CAS  Google Scholar 

  • Cronan, C. S., 1980. Controls on leaching from forest floor microcosms. Plant & Soil 56: 301–322.

    Article  CAS  Google Scholar 

  • Curtis, P. J., 1991. Biogeochemistry of iron in small Precam-brian Shield lakes at the Experimental Lakes Area, northwestern Ontario. Ph.D. Thesis, University of Manitoba. 284 pp.

    Google Scholar 

  • Davies-Colley, R. J. & W. N. Vant, 1987. Absorption of light by yellow substance in freshwater lakes. Limnol. Oceanogr. 32: 416–425.

    Article  CAS  Google Scholar 

  • De Haan, H., 1991. Impacts of environmental changes on the biogeochemistry of aquatic humic substances. Hydrobiologia (this volume).

    Google Scholar 

  • Dillon, P. J., H. E. Evans & P. J. Scholer, 1988. The effects of acidification on metal budgets of lakes and catchments. Biogeochem. 5: 201–220.

    Article  CAS  Google Scholar 

  • Drever, J., 1988. The geochemistry of natural waters. Prentice-Hall Inc., New Jersey. 437 pp.

    Google Scholar 

  • Effler, S. W., G. C. Schafran & C. T. Driscoll, 1985. Partitioning light attenuation in an acidic lake. Can. J. Fish. aquat. Sci. 42: 1707–1711.

    Article  Google Scholar 

  • Engstrom, D. R., 1987. Influence of vegetation and hydrology on the humus budgets of Labrador lakes. Can. J. Fish. aquat. Sci. 44: 1306–1314.

    Article  Google Scholar 

  • Eshleman, K. N. & H. F. Hemond, 1985. The role of organic acids in the acid-base status of surface waters at Bickford Watershed, Massachusetts. Wat. Resour. Res. 21: 1503–1510.

    Article  CAS  Google Scholar 

  • Findlay, D. L., 1984. Effects of phytoplankton biomass, succession and composition in Lake 223 as a result of lowering pH levels from 5.6 to 5.2. Data from 1980 to 1982. Can. MS Rep. Fish. aquat. Sci. 1761:iv + 16p.

    Google Scholar 

  • Findlay, D. L. & S. E. M. Kasian, 1987. Phytoplankton community response to nutrient addition in Lake 226, Experimental Lakes Area, northwestern Ontario. Can. J. Fish. aquat. Sci. 44 (suppl. 1): 35–46.

    Article  CAS  Google Scholar 

  • Glover, G. M. & A. H. Webb, 1979. Weak and strong acids in the surface waters of the Tovdal region of southern Norway. Wat. Res. 13: 781–783.

    Article  CAS  Google Scholar 

  • Gorham, E., J. K. Underwood, F. B. Martin & J. G. Ogden III, 1986. Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature 324: 451–453.

    Article  CAS  Google Scholar 

  • Guildford, S. J., F. P. Healey & R. E. Hecky, 1987. Depression of primary production by humic matter and suspended sediment in limnocorral experiments at Southern Indian Lake, northern Manitoba. Can. J. Fish. aquat. Sci. 44: 1408–1417.

    Article  Google Scholar 

  • Heikkinen, K., 1989. Organic carbon transport in an undisturbed boreal humic river in northern Finland. Arch. Hydrobiol. 117: 1–19.

    CAS  Google Scholar 

  • Herczeg, A. L., 1985. Carbon dioxide equilibria and 13C studies in some soft water lakes. Ph.D. thesis, Columbia University, New York,. 260 pp.

    Google Scholar 

  • Herczeg, A. L., W. S. Broecker, R. F. Anderson & S. L. Schiff, 1985. A new method for monitoring temporal trends in the acidity of fresh waters. Nature 315: 133–135.

    Article  CAS  Google Scholar 

  • Hesslein, R. H., W. S. Broecker, P. D. Quay & D. W. Schindler,1980. Whole lake radiocarbon experiment in an olig- otrophic lake at the Experimental Lakes Area, northwestern Ontario. Can. J. Fish. aquat. Sci. 37: 454–463.

    Article  CAS  Google Scholar 

  • Hobbie, J. E. & G. E. Likens, 1983. Output of phosphorus, dissolved organic carbon, and fine particulate carbon from Hubbard Brook Watersheds. Limnol. Oceanogr. 18: 734–742.

    Article  Google Scholar 

  • Hutchinson, G. E., 1957. A Treatise on Limnology. Vol. 1. John Wiley & Sons, New York. 1015 pp.

    Google Scholar 

  • Jackson, T. A. & R. E. Hecky, 1980. Depression of primary production by humic matter in lake and reservoir waters of the boreal forest zone. Can. J. Fish, aquat. Sci. 37: 2300–2317.

    Article  Google Scholar 

  • Janus, L. L. & R. A. Vollenweider, 1981. The OECD cooperative report on eutrophication: Canadian contribution. Summ. Rep. Sci. Ser. 132.

    Google Scholar 

  • Jones, R. I., 1991. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia (this volume).

    Google Scholar 

  • Kerekes, J., G. Howell & T. Pollock, 1984. Problems associated with sulfate determination in colored, humic waters in Kejimkujik National Park, Nova Scotia (Canada). Verh. int. Ver. Limnol. 22: 811–817.

    Google Scholar 

  • Kerekes, J., S. Beauchamp, R. Tordon, C. Tremblay & T. Pollock, 1986. Organic vs. anthropogenic acidity in tributaries of the Kejimkujik watersheds in western Nova Scotia. Wat. Air Soil Pollut. 31: 207–214.

    Article  CAS  Google Scholar 

  • Kortelainen, P. & J. Mannio, 1987. The contribution of acidic organic anions to the ion balance of lake waters, pp. 229–238. In: Acidification and Water Pathways. UNESCO conference, Bolkesjo, Norway, 4–5 May 1987. Vol. II.

    Google Scholar 

  • LaZerte, B. D. & P. J. Dillon, 1984. Relative importance of anthrophogenic versus natural sources of acidity in lakes and streams of central Ontario. Can. J. Fish. aquat. Sci. 42: 1664–1677.

    Article  Google Scholar 

  • Levine, S. N. & D. W. Schindler, 1980. Radiochemical analysis of orthophosphate concentrations and seasonal changes in the flux of orthophosphate to seston in two Canadian Shield lakes. Can. J. Fish. aquat. Sci. 37: 479–487.

    Article  CAS  Google Scholar 

  • Levine, S. N., M. P. Stainton & D. W.Schindler, 1986. A radiotracer study of phosphorus cycling in a eutrophic Canadian Shield lake, Lake 227, northwestern Ontario. Can. J. Fish. aquat. Sci. 43: 366–378.

    Article  CAS  Google Scholar 

  • Lewis, W. M. Jr. & M. C. Grant, 1979. Relationships between stream discharge and dissolved substances from a Colorado mountain watershed. Soil Sci. 128: 353–363.

    Article  CAS  Google Scholar 

  • Likens, G. E., 1985. An ecosystem approach to aquatic ecology: Mirror Lake and its environment. Springer-Verlag, New York. 516 pp.

    Chapter  Google Scholar 

  • Lorius, C., J. Jouzel, D. Raynaud, J. Hansen & H. Le Traut, 1990. The ice-core record: climate sensitivity and future greenhouse warming. Nature 347: 139–145.

    Article  CAS  Google Scholar 

  • McDowell, W. H. & G. E. Likens, 1988. Origin, composition and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr. 58: 177–195.

    Article  Google Scholar 

  • McKnight, D., E. M. Thurman, R. Wershaw & H. Hemond, 1985. Biogeochemistry of aquatic humic substances in Thoreau’s Bog, Concord, Massachusetts. Ecology 66: 1339–1352.

    Article  CAS  Google Scholar 

  • Meyer, J. L. & C. M. Tate, 1983. The effects of watershed disturbance on the dissolved organic carbon dynamics of a stream. Ecology 64: 33–44.

    Article  Google Scholar 

  • Meyer, J. L., C. M. Tate, R. T. Edwards & M. T. Crocker, 1987. The trophic significance of dissolved organic carbon in streams, pp. 269–278. In W. T. Swank and D. A. Crossley, Jr. (eds). Forest hydrology and ecology at Coweeta. Springer-Verlag, New York.

    Google Scholar 

  • Miskimmin, B. M., J. W. M. Rudd & C. A. Kelly, 1991. The influence of dissolved organic carbon, pH, and microbial respiration on mercury methylation and demethylation in lake water. Can. J. Fish. aquat. Sci. (in press).

    Google Scholar 

  • Mulholland, P. J. & E. J. Kuenzler, 1979. Organic carbon export from upland and forested wetland watersheds. Limnol. Oceanogr. 24: 960–966.

    Article  CAS  Google Scholar 

  • Münster, U., P. Einiö, J. Nurminen & J. Overbeck, 1991. Extracellular enzymes in a polyhumic lake: important regulators in detritus processing. Hydrobiologia (this volume).

    Google Scholar 

  • Naiman, R. J., 1982. Characteristics of sediment and organic carbon export from pristine boreal forest watersheds. Can. J. Fish. aquat. Sci. 39: 1699–1718.

    Article  CAS  Google Scholar 

  • Nalewajko, C. & D. R. S. Lean, 1972. Growth and excretion in planktonic algae and bacteria. J. Phycol. 8: 361–366.

    CAS  Google Scholar 

  • Nalewajko, C. & D. W. Schindler, 1976. Primary production, extracellular release, and heterotrophy in two lakes in the ELA, Northwestern Ontario. J. Fish Res. Bd. Can. 33: 219–226.

    Article  Google Scholar 

  • Nilsson, J. I., 1985. Budgets of aluminium species, iron and manganese in the Lake Gardsjon catchment in SW Sweden. Ecol. Bull. (Stockholm) 37: 120–137.

    Google Scholar 

  • Pitkänen, H., 1986. Discharges of nutrients and organic matter to the Gulf of Bothnia by Finnish Rivers in 1968–1983, pp 72–83. In Kangas, P. and M. Forsskahl (eds). Proceedings of the 3rd Finnish seminar on the Gulf of Bothnia. Water Research Inst. Publ. no. 68, National Board of Waters and Environment, Helsinki.

    Google Scholar 

  • Quay, P. D., S. Emerson, B. M. Quay & A. H. Devol, 1986. The carbon cycle for Lake Washington - a stable isotope study. Limnol. Oceanogr. 31: 596–611.

    Article  CAS  Google Scholar 

  • Rasmussen, J. B. & J. Kalff, 1987. Empirical models for zoobenthos in lakes. Can. J. Fish. aquat. Sci. 44: 990–1001.

    Article  Google Scholar 

  • Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34: 1336–1343.

    Article  CAS  Google Scholar 

  • Rau, G., 1978. Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science 201: 901–902.

    Article  PubMed  CAS  Google Scholar 

  • Rudd, J. W. M. & C. D. Taylor, 1980. Methane cycling in aquatic environments. Adv. Aquat. Microbiol. 2: 77–150.

    CAS  Google Scholar 

  • Rudd, J. W. M., C. A. Kelly, D. W. Schindler & M. A. Turner, 1988. Disruption of the nitrogen cycle in acidified lakes. Science 240: 1515–1517.

    Article  PubMed  CAS  Google Scholar 

  • Rudd, J. W. M., C.A. Kelly, D. W. Schindler & M. A. Turner, 1990. A comparison of the acidification efficiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnol. Oceanogr. 35: 663–679.

    Article  CAS  Google Scholar 

  • Sakamoto, M., 1971. Chemical factors involved in the control of phytoplankton production in the Experimental Lakes Area, northwestern Ontario. J. Fish Res. Bd. Can. 28: 203–213.

    Article  CAS  Google Scholar 

  • Schiff, S. L., R. Aravena, S. E. Trumbore & P. J. Dillon, 1991. Dissolved organic carbon cycling in forested watersheds: A carbon isotope approach. Wat. Resour. Res. 26: 2949–2957.

    Article  Google Scholar 

  • Schindler, D. W., 1971a. An hypothesis to explain differences and similarities among lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish Res. Bd Can. 28: 295–301.

    Article  Google Scholar 

  • Schindler, D. W., 1971b. Light, temperature and oxygen regimes of selected lakes in the Experimental Lakes Area (ELA), northwestern Ontario. J. Fish Bd Can. 28: 157–169.

    Article  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D. W., 1980. Experimental acidification of a whole lake: a test of the oligotrophication hypothesis, pp. 370–373. In D. Drablos and A. Tollan (eds). Proc. Int. Conf. Imp. Acid Precip., Sandefjord, Norway. SNSF Project, Oslo, Norway.

    Google Scholar 

  • Schindler, D. W., 1988. Experimental studies of chemical Stressors on whole lake ecosystems. Edgardo Baldi memorial lecture. Ver. int. Ver. Limnol. 23: 11–41.

    Google Scholar 

  • Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.

    Article  Google Scholar 

  • Schindler, D. W., G. J. Brunskill, S. Emerson, W. S. Broecker & T.-H. Peng, 1972. Atmospheric carbon dioxide: Its role in maintaining phytoplankton standing crops. Science 177: 1192–1194.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D. W., R. Wagemann, R. B. Cook, T. Ruszczynski & J. Prokopowich, 1980. Experimental acidification of Lake 223, Experimental Lakes Area: background data and the first three years of acidification. Can. J. Fish. aquat. Sci. 37: 342–354.

    Article  CAS  Google Scholar 

  • Schindler, D. W., R. H. Hesslein & M. A. Turner, 1987. Exchange of nutrients between sediments and water after 15 years of experimental eutrophication. Can. J. Fish. aquat. Sci. 44: (suppl. 1): 26–33.

    Article  CAS  Google Scholar 

  • Schindler, D. W., K. Beaty, E. J. Fee, D. R. Cruikshank, E. R. DeBruyn, D. L. Findlay, G. A. Linsey, J. A. Shearer, M. P. Stainton & M. A. Turner, 1990. Effects of climatic warming on the lakes of the lakes of the central boreal forest. Science 250: 967–970.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D. W., T. M. Frost, K. H. Mills, P. S. S. Chang, I. J. Davies, D. L. Findlay, D. F. Malley, J. A. Shearer, M. A. Turner, P. J. Garrison, C. J. Watras, K. Webster, J. M. Gunn, P. L. Brezonik & W. A. Swenson, 1991. Comparisons between experimentally- and atmospherically-acidified lakes during stress and recovery. Proc. Roy. Soc. Edinburgh 97B: 193–226.

    Google Scholar 

  • Shearer, J. A. & E. R. DeBruyn, 1986. Phytoplankton productivity responses to direct addition of sulfuric and nitric acids to the waters of a double basin lake. Wat. Air Soil Pollut. 30: 695–702.

    Article  CAS  Google Scholar 

  • Shearer, J. A., E. J. Fee, E. R. DeBruyn & D. R. DeClercq, 1987. Phytoplankton productivity changes in a small, double-basin lake in response to termination of experimental fertilization. Can. J. Fish. aquat. Sci. 44 (Suppl. 1): 47–54.

    Article  Google Scholar 

  • Sholkowitz, E. R. & D. Copland, 1982. The chemistry of suspended matter in Esthwaite Water, a biologically productive lake with seasonally anoxic hypolimnion. Geochim. Cosmochim. Acta 46: 393–410.

    Article  Google Scholar 

  • Stainton, M. P., M. Capel & F. A. J. Armstrong, 1977. The chemical analysis of freshwater. 2nd. edition. Can. Fish, Mar. Serv. Misc. Spec. Publ. 25: 166 pp.

    Google Scholar 

  • Stumm, W. & J. Morgan, 1981. Aquatic chemistry. J. Wiley & Sons, New York. 780 pp.

    Google Scholar 

  • Tailing, J. F., 1976. The depletion of carbon dioxide from water by phytoplankton. J. Ecol. 64: 79–122.

    Article  Google Scholar 

  • Tate, C. M. & J. L. Meyer, 1983. The influence of hydrologic conditions and successional state on dissolved organic carbon export from forested watersheds. Ecology 64: 25–32.

    Article  Google Scholar 

  • Tipping, E. & D. Cooke, 1982. The effects of adsorbed humic substances on the surface charge of goethite (alpha- FeOOH) in freshwaters. Geochim. Cosmochim. Acta 46: 75–80.

    Article  CAS  Google Scholar 

  • Tipping, E. & M. Ohnstad, 1984. Colloid stability of iron oxide particles from a freshwater lake. Nature 308: 266–268.

    Article  CAS  Google Scholar 

  • Thompson, B. M. & R. D. Hamilton, 1973. Heterotrophic utilization of sucrose in an artificially enriched lake. J. Fish Res. Bd Can. 30: 1547–1552.

    Article  CAS  Google Scholar 

  • Urban, N. R., S. J. Eisenreich & E. Gorham, 1987. Proton cycling, in bogs: Geographic variation in eastern North America, pp. 577–598. In T. C. Hutchinson & K. M. Meema (eds). The effects of air pollutants on forests, wetlands and agricultural ecosystems. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Urban, N. R., S. E. Bayley & S. J. Eisenreich, 1989. Export of dissolved organic carbon and acidity from peatlands. Wat. Resour. Res. 25: 1619–1628.

    Article  CAS  Google Scholar 

  • van Breeman, N., C. T. Driscoll & J. Mulder, 1984. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307: 599–604.

    Article  Google Scholar 

  • Vertucci, F. A. & G. E. Likens, 1989. Spectral reflectance and water quality of Adirondack mountain region lakes. Limnol. Oceanogr. 34: 1656–1672.

    Article  CAS  Google Scholar 

  • Wahlgren, M. A. & K. A. Orlandini, 1981. Comparison of the geochemical behavior of plutonium, thorium and uranium in selected North American lakes. In IAEA-SM-257/ International symposium on migration in the terrestrial environment of long-lived radionuclides from the nuclear fuel cycle. Knoxville, Tenn., USA, 27–31 July 1981.

    Google Scholar 

  • Watras, C. J. & A. L. Baker, 1988. The spectral distribution of downwelling light in northern Wisconsin lakes. Arch. Hydrobiol. 112: 481–494.

    Google Scholar 

  • Weilenmann, U., C. R. O’Melia & W. Stumm, 1989. Particle transport in lakes: Models and measurements. Limnol. Oceanogr. 34: 1–18.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1991. Gradient dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia (this volume).

    Google Scholar 

  • Wetzel, R. G., P. H. Rich, M. C. Miller & H. L. Allen, 1972. Metabolism of dissolved and particulate organic matter in the sea. Deep Sea Res. 17: 19–27.

    Google Scholar 

  • Wissmar, R. C., J. E. Richey & D. E. Spyridakis, 1977. The importance of allochthonous particulate carbon pathways in a subalpine lake. J. Fish Res. Bd Can. 34: 1410–1418.

    Article  CAS  Google Scholar 

  • Wright, R. F., E. Lotse & A. Semb, 1988. Reversibility of acidification shown by whole-catchment experiments. Nature 334: 670–675.

    Article  CAS  Google Scholar 

  • Yan, N. D., 1983. Effects of changes in pH on transparency and thermal regimes of Lohi Lake, near Sudbury, Ontario. Can. J. Fish. aquat. Sci. 40: 621–626.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Salonen T. Kairesalo R. I. Jones

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schindler, D.W., Bayley, S.E., Curtis, P.J., Parker, B.R., Stainton, M.P., Kelly, C.A. (1992). Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in precambrian shield lakes. In: Salonen, K., Kairesalo, T., Jones, R.I. (eds) Dissolved Organic Matter in Lacustrine Ecosystems. Developments in Hydrobiology, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2474-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2474-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5092-0

  • Online ISBN: 978-94-011-2474-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics