Skip to main content

3-Amino-2H-azirines, equivalents of α,α-disubstituted α-amino acids in the synthesis of heterocycles and peptides

  • Chapter
Amino Acids

Abstract

The easily available 2,2-disubstituted 3-amino-2H-azirines 1 react with a variety of acidic compounds, e.g. NH-acidic heterocycles, to give novel heterocycles containing α,α-disubstituted α-amino acids. These reactions proceed via formation of an intermediate aziridine, which is rearranged to a bicyclic zwitterion. This zwitterion is the key intermediate in all reactions proceeding via cleavage of the C=N bond of 1. The reaction of 1 with carboxylic acids leads to the formation of diamides, e.g. acyl-amino isobutyramides. The general character of this reaction has been demonstrated in particular with amino acids and oligopeptides. Together with the selective hydrolysis of the C-terminal amide group, this reaction sequence (‘Azirinel Oxazolone-Method’) represents a new and efficient strategy for the synthesis of peptides with α,α-disubstituted α-amino acids.

The scope of the ‘Azirine/Oxazolone-Method’ for the synthesis of linear and cyclic peptides and depsipeptides is demonstrated by the synthesis of segments of the peptaibols Alamethicin F-30 and Trichotoxin A-50 as well as of model peptides, used for studies of the influence of α,α-disubstitution on the conformation of the peptide. Via an analogous approach, the synthesis of cyclo[Gly-Phe(2Me)-Aib-Aib-Gly] is achieved by the pentafluorophenol/DCC cyclization of H-Gly-Phe(2Me)-Aib-Aib-Gly-OH. In the case of cyclic depsipeptides, the linear precursors can be cyclized directly by treatment with HCl-gas in a non-nucleophilic solvent (‘Direct Amide Cyclization’).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rens M and Ghosez L (1970) Tetrahedron Lett. 3765.

    Google Scholar 

  2. Dietliker K and Heimgartner H (1983) Helv. Chim. Acta 66: 262.

    Article  CAS  Google Scholar 

  3. Demoulin A, Gorissen H, Hesbain-Frisque AM and Ghosez L (1975) J. Am. Chem. Soc. 97: 440.

    Article  Google Scholar 

  4. Schaumann E, Kausch E and Walter W (1975) Chem. Ber. 108: 2500.

    Google Scholar 

  5. Widmer U, Heimgartner H and Schmid H (1978) Helv. Chim. Acta 61: 815.

    Google Scholar 

  6. Hoet P (1975) Dissertation Université Catholique de Louvain.

    Google Scholar 

  7. Heimgartner H (1981) Israel J. Chem. 21: 151.

    CAS  Google Scholar 

  8. Heimgartner H (1986) Israel J. Chem. 27: 3.

    CAS  Google Scholar 

  9. Ametamey SM, Hollenstein R and Heimgartner H (1988) Helv. Chim. Acta 71: 521.

    Google Scholar 

  10. Chaloupka S, Vittorelli P, Heimgartner H, Schmid H, Link H, Bernauer K and Oberhänsli WE (1977) Helv. Chim. Acta 60: 2476.

    Google Scholar 

  11. Scholl B, Bieri JH and Heimgartner H (1978) Helv. Chim. Acta 61: 3050.

    Google Scholar 

  12. Schläpfer-Dähler M, Prewo R, Bieri JH and Heimgartner H (1984) Heterocycles 22: 1667.

    Article  Google Scholar 

  13. Hostettler B, Obrecht JP, Prewo R, Bieri JH and Heimgartner H (1986) Helv. Chim. Acta 69: 298.

    Google Scholar 

  14. Prewo R, Bieri JH and Heimgartner H (1985) Chimia 39: 354.

    CAS  Google Scholar 

  15. Ametamey SM (1989) Dissertation Universität Zürich.

    Google Scholar 

  16. Chaloupka S, Bieri JH and Heimgartner H (1980) Helv. Chim. Acta 63: 1797.

    Google Scholar 

  17. Chandrasekhar BP, Heimgartner H and Schmid H (1977) Helv. Chim. Acta 60: 2270; Chandrasekhar BP and Heimgartner, unpublished results.

    Google Scholar 

  18. Vittorelli P, Heimgartner H, Schmid H, Hoet P and Ghosez L (1974) Tetrahedron 30: 3737.

    Article  CAS  Google Scholar 

  19. Chandrasekhar BP, Schmid U, Schmid R, Heimgartner H and Schmid H (1975) Helv. Chim. Acta 58: 1191.

    Google Scholar 

  20. Jenny Ch and Heimgartner H (1986) Helv. Chim. Acta 69: 374.

    Article  CAS  Google Scholar 

  21. Obrecht D and Heimgartner H (1981) Helv. Chim. Acta 64: 482.

    Article  CAS  Google Scholar 

  22. Obrecht D and Heimgartner H (1987) Helv. Chim. Acta 70: 102.

    Article  CAS  Google Scholar 

  23. Obrecht D, Scholl B and Heimgartner H (1985) Helv. Chim. Acta 68: 465.

    Google Scholar 

  24. Wipf P and Heimgartner H (1987) Helv. Chim. Acta 70: 354.

    Article  CAS  Google Scholar 

  25. Dannecker-Doerig I (1989) unpublished results.

    Google Scholar 

  26. Ametamey SM, Prewo R, Bieri JH, Heimgartner H and Obrecht JP (1986) Helv. Chim. Acta 69: 2013.

    Google Scholar 

  27. Schläpfer-Dähler M, Prewo R, Bieri JH, Germain G and Heimgartner H (1988) Chimia 42: 25.

    Google Scholar 

  28. Los M (1984) ACS Symp. Ser. 255: 29; Amer. Cyanamid Co., US Patent 4188487, 1980; US Patent 4221586, 1980.

    Google Scholar 

  29. Obrecht JP, Schönholzer P, Jenny Ch, Prewo R and Heimgartner H (1988) Helv. Chim. Acta 71: 1319.

    Google Scholar 

  30. Wipf P and Heimgartner H (1986) Helv. Chim. Acta 69: 1153.

    Article  CAS  Google Scholar 

  31. Wipf P and Heimgartner H (1988) Helv. Chim. Acta 71: 140.

    Article  CAS  Google Scholar 

  32. Sahebi M, Wipf P and Heimgartner H (1989) Tetrahedron 45: 2999.

    Article  CAS  Google Scholar 

  33. Wipf P and Heimgartner H (1988) Helv. Chim. Acta 71: 258; Wipf P, Kunz RW, Prewo R and Heimgartner H (1988) ibid. 71: 268.

    CAS  Google Scholar 

  34. Toniolo C, Bonora GM, Bavoso A, Benedetti E, di Blasio B, Pavone V and Pedone C (1983) Biopolymers 22: 205.

    Article  CAS  Google Scholar 

  35. Müller P and Rudin DO (1968) Nature 217: 713.

    Article  Google Scholar 

  36. Schmitt H and Jung G (1985) Liebigs Ann. Chem. 321 and 345.

    Google Scholar 

  37. Wipf P (1987) Dissertation Universität Zürich.

    Google Scholar 

  38. Jung G, Brückner H and Schmitt H (1981) In: Voelter W and Weitzel G (eds.) Structure and Activity of Natural Peptides, de Gruyter, Berlin, p. 75.

    Google Scholar 

  39. Brückner H, Przybylsky M, Dietrich I and Manz I (1984) Biomed. Mass. Spectrom. 11: 569; Brückner H and Przybylsky M (1984) J. Chromatogr. 296: 263 and ref. cited therein.

    Google Scholar 

  40. Altherr W (1988) Diplomarbeit Universität Zürich.

    Google Scholar 

  41. Obrecht D and Heimgartner H (1983) Tetrahedron Lett. 24: 1921; (1987) Helv. Chim. Acta 70: 329.

    Google Scholar 

  42. Obrecht D and Heimgartner H (1984) Helv. Chim. Acta 67: 526.

    Article  CAS  Google Scholar 

  43. Schröder E and Lübke K (1963) Experientia 19: 57.

    Article  Google Scholar 

  44. Ovchinnikov, Yu A (1976) In: Rydon HN (ed.) MTP Int. Rev. of Science, Organic Chemistry, Series Two. Butterworths, London, Vol. 6, p. 219.

    Google Scholar 

  45. Obrecht D (1983) Dissertation Universität Zürich.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 ESCOM Science Publishers B.V.

About this chapter

Cite this chapter

Heimgartner, H. (1990). 3-Amino-2H-azirines, equivalents of α,α-disubstituted α-amino acids in the synthesis of heterocycles and peptides. In: Lubec, G., Rosenthal, G.A. (eds) Amino Acids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2262-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2262-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-72199-04-1

  • Online ISBN: 978-94-011-2262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics