Skip to main content

Biosynthetic mechanism and physiological role of heterocyclic ß-substituted alanines in higher plants

  • Chapter
Amino Acids

Abstract

Purification of cysteine synthase from the seedlings of Leucaena leucocephala reveals the presence of two forms of this enzyme, separated by chromatography on DEAE-Sephadex A-50. Both isoenzymes have the same Mr of 64,000 consisting of two identical subunits each. The subunits contain one molecule of pyridoxal 5′-phosphate. Cysteine synthases from L. leucocephala catalyzed the formation of some heterocyclic ß-substituted alanines such as ß-Cpyrazol-l-yl)-L-alanine from O-acetyl-L-serine as an additional catalytic activity, but only isoenzyme B catalyzed the formation of L-mimosine in the same manner as the formation of L-quisqualic acid in Quisqualis indica var. villosa. The properties of the cysteine synthase isoenzymes purified in this study suggest that all cysteine synthases in higher plants can be multifunctional enzymes that are involved in the biosynthesis of ß-substituted alanines, and that these enzymes may have different substrate specificities. The physiological role of these enzymes in higher plants is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takemoto T, Takagi N, Nakajima T and Koike K (1975) Yakugaku Zasshi 95: 176–179.

    PubMed  CAS  Google Scholar 

  2. Hegarty MP, Schinckel PG and Court RD (1964) Aust. J. Agric. Res. 15: 153–167.

    Article  CAS  Google Scholar 

  3. Murakoshi I, Kuramoto H, Haginiwa J and Fowden L (1972) Phytochemistry 11: 177–182.

    Article  CAS  Google Scholar 

  4. Murakoshi I, Kato F, Haginiwa J and Takemoto T (1974) Chem. Pharm. Bull. 22: 473–475.

    CAS  Google Scholar 

  5. Murakoshi I, Kato F and Haginiwa J (1974) Chem. Pharm. Bull. 22: 480–481.

    CAS  Google Scholar 

  6. Murakoshi I, Ikegami F, Kato F, Haginiwa J, Lambein F, Van Rompuy L and Van Parijs R (1975) Phytochemistry 14: 1515–1517.

    Article  CAS  Google Scholar 

  7. Murakoshi I, Ikegami F, Ookawa N, Ariki T, Haginiwa J, Kuo Y -H and Lambein F (1978) Phytochemistry 17: 1571–1576.

    Article  CAS  Google Scholar 

  8. Murakoshi I, Ikegami F, Harada K and Haginiwa J (1978) Chem. Pharm. Bull. 26: 1942–1945.

    CAS  Google Scholar 

  9. Murakoshi I, Koide C, Ikegami F and Nasu K (1983) Chem. Pharm. Bull. 31: 1777–1779.

    CAS  Google Scholar 

  10. Dunnill PM and Fowden L (1963) J. Exp. Botany 14: 237–248.

    Article  CAS  Google Scholar 

  11. Hadwiger LA, Floss HG, Stoker JR and Conn EE (1965) Phytochemistry 4: 825–830.

    Article  CAS  Google Scholar 

  12. Tiwari HP, Penrose WR and Spenser ID (1967) Phytochemistry 6: 1245–1248.

    Article  CAS  Google Scholar 

  13. Giovanelli J and Mudd SH (1968) Biochem Biophys. Res. Commun. 31: 275–280.

    Article  PubMed  CAS  Google Scholar 

  14. Thompson JF and Moore DP (1968) Biochem. Biophys. Res. Commun. 31: 281–286.

    Article  PubMed  CAS  Google Scholar 

  15. Smith IK and Thompson JF (1971) Biochim. Biophys. Acta 227: 288–295.

    PubMed  CAS  Google Scholar 

  16. Ng BH and Anderson JW (1978) Phytochemistry 17: 2069–2074.

    Article  CAS  Google Scholar 

  17. Murakoshi I, Ikegami F, Hinuma Y and Hanma Y (1984) Phytochemistry 23: 973–977.

    Article  CAS  Google Scholar 

  18. Murakoshi I, Ikegami F, Hinuma Y and Hanma Y (1984) Phytochemistry 23: 1905–1908.

    Article  CAS  Google Scholar 

  19. Murakoshi I, Ikegami F and Kaneko M (1985) Phytochemistry 24, 1907–1911.

    Article  CAS  Google Scholar 

  20. Murakoshi I, Kaneko M, Koide C and Ikegami F (1986) Phytochemistry 25: 2759–2763.

    Article  CAS  Google Scholar 

  21. Ikegami F, Kaneko M, Lambein F, Kuo Y-H and Murakoshi I (1987) Phytochemistry 26: 2699–2704.

    Article  CAS  Google Scholar 

  22. Ikegami F, Kaneko M, Kamiyama H and Murakoshi I (1988) Phytochemistry 27: 697–701.

    Article  CAS  Google Scholar 

  23. Ikegami F, Kaneko M, Kobori M and Murakoshi I (1988) Phytochemistry 27: 3379–3383.

    Article  CAS  Google Scholar 

  24. Gaitonde MK (1967) Biochem. J 104: 627–633.

    PubMed  CAS  Google Scholar 

  25. Lowry JB, Tangendjaja B and Cook NW (1985) J. Sci. Food Agric. 36: 799–807.

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  27. Kumagai H, Yamada H, Matsui H, Ohkishi H and Ogata K (1970) J. Biol. Chem. 245: 1773–1777.

    PubMed  CAS  Google Scholar 

  28. Andrews P (1965) Biochem. J. 96: 595–606.

    PubMed  CAS  Google Scholar 

  29. King J and Laemmli UK (1971) J. Mol. Biol. 62: 465–477.

    Article  PubMed  CAS  Google Scholar 

  30. Murakoshi I, Ikegami F, Hama T and Nishino K (1984) Shoyakugaku Zasshi 38: 355–358.

    CAS  Google Scholar 

  31. Masada M, Fukushima K and Tamura G (1975) J. Biochem. 77: 1107–1115.

    PubMed  CAS  Google Scholar 

  32. Tamura G, Iwasawa T, Masada M and Fukushima K (1976) Agric. Biol. Chem. 40: 637–638.

    Article  CAS  Google Scholar 

  33. Bertagnolli BL and Wedding RT (1977) Plant Physiol. 60: 115–121.

    Article  PubMed  CAS  Google Scholar 

  34. Ikegami F, Takayama K, Tajima C and Murakoshi I (1988) Phytochemistry 27: 2011–2016.

    Article  CAS  Google Scholar 

  35. Manning K (1986) Planta 168: 61–66.

    Article  CAS  Google Scholar 

  36. Ikegami F, Takayama K and Murakoshi I (1988) Phytochemistry 27: 3385–3389.

    Article  CAS  Google Scholar 

  37. Massini P (1963) Acta Bot. Neerl. 12: 64–72.

    CAS  Google Scholar 

  38. Murakoshi I, Ikegami F, Nishimura T and Tomita K (1985) Phytochemistry 24: 1693–1695.

    Article  CAS  Google Scholar 

  39. Fowden L, Lea PJ and Bell EA (1979) Adv. Enzymol. 50: 117–175.

    PubMed  CAS  Google Scholar 

  40. Bell EA (1976) FEBS Letters 64: 29–35.

    Article  PubMed  CAS  Google Scholar 

  41. Chernoff H (1973) J. Am. Stat. Assoc. 68: 361–368.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 ESCOM Science Publishers B.V.

About this chapter

Cite this chapter

Ikegami, F., Lambein, F., Fowden, L., Murakoshi, I. (1990). Biosynthetic mechanism and physiological role of heterocyclic ß-substituted alanines in higher plants. In: Lubec, G., Rosenthal, G.A. (eds) Amino Acids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2262-7_130

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2262-7_130

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-72199-04-1

  • Online ISBN: 978-94-011-2262-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics