Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 235))

  • 132 Accesses

Abstract

Field evaporation of positive and negative ions of Au adatoms from a Au(100) surface and Si adatoms from a T4 site above a Si(111) unreconstructed surface are investigated within the charge exchange model. The atomic potentials for gold were determined using the embedded atom method and a method due to H. Gollisch[Surf. Sci. 166,87(1986)]. For Si, the atomic potentials used were the empirical potential due to Tersoff[Phys. Rev. B 37,6991(1988)] and an environment dependent potential developed by Bolding and Andersen[Phys. Rev. B 41,10568(1990)]. In the FIM configuration, for both materials, the singly charged positive ion is predicted as the observed species; in the STM configuration, the doubly charged negative ion is the favored ion species since it requires the lowest evaporation field.

Research supported by the NSC of ROC.

On leave from the same department.

On leave from the same department.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. T. Tsong, Atom-Probe Field Ion Microscopy, Cambridge Univ. Press. (1990).

    Google Scholar 

  2. H. J. Mamin, P.H. Guethner and D. Rugar, Phys. Rev. Lett. 65,2418(1990).

    Article  ADS  Google Scholar 

  3. I. Lyo and P. Avouris, Science 245,1369(1989).

    Article  ADS  Google Scholar 

  4. A. Kobayashi, F. Gray, R.S. Williams and M. Aono, private communication.

    Google Scholar 

  5. Tien T. Tsong, Phys. Rev. B44,13703(1991).

    ADS  Google Scholar 

  6. R. Gomer and L. W. Swanson, J. Chem. Phys. 38,1613(1963).

    Article  ADS  Google Scholar 

  7. H. Gollisch, Surf. Sci.166,87(1986);175,249(1986).

    Google Scholar 

  8. M. S. Daw and M. I. Baskes, Phys. Rev. B29,6443(1984).

    ADS  Google Scholar 

  9. S.M. Folles, M.I. Baskes and M.S. Daw, Phys Rev. B33,7983(1986).

    ADS  Google Scholar 

  10. A.D. Mc Lean and R.S. Mc Lean, Atomic Data Nucl. Tables 26,197(1981).

    Article  ADS  Google Scholar 

  11. G. Binnig, N. Garcia, H. Rorher, J.M. Soler and F. Flores, Phys. Rev. B30,4816(1984).

    ADS  Google Scholar 

  12. J. Tersoff, Phys Rev. B37,6991(1988).

    ADS  Google Scholar 

  13. Barry C. Bolding and Hans C. Andersen, Phys. Rev. B41,10568(1990).

    ADS  Google Scholar 

  14. T.T. Tsong, Surf. Sci. 81,28(1979).

    Article  ADS  Google Scholar 

  15. The result was derived by the authors.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miskovsky, N.M., Tsong, T.T., Wei, C.M. (1993). Atomic Manipulation Using Field Evaporation. In: Binh, V.T., Garcia, N., Dransfeld, K. (eds) Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications. NATO ASI Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1729-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1729-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4758-6

  • Online ISBN: 978-94-011-1729-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics