Skip to main content

Part of the book series: Series Entomologica ((SENT,volume 49))

Summary

The paradigm of plant herbivore coevolution suggests that determining the evolutionary response of plants to insect herbivory will improve our understanding of many aspects of plant and insect ecology. There are two potential evolutionary responses of plants to herbivory: resistance and tolerance. This paper examines problems inherent in measuring one factor involved in the evolution of plant resistance (the allocation cost of resistance) and then briefly considers the relationship between the evolution of tolerance and resistance in the common morning glory, Ipomoea purpurea Roth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, I.T., C.L. Sims & S.E. Kean (1990). The reproductive consequences associated with inducible alkaloidal responses in wild tobacco. Ecology 71 252–262.

    Article  CAS  Google Scholar 

  • Berenbaum, M. (1983). Coumarins and caterpillars: a case for coevolution. Evolution 37: 163–179.

    Article  CAS  Google Scholar 

  • Berenbaum, M.R., A.R. Zangerl & J.K. Nitao (1986). Constraints on chemical coevolution: wild parsnips and the parsnip webworm. Evolution 40: 1215–1228.

    Article  CAS  Google Scholar 

  • Berenbaum, M. & P.P. Feeny (1981). Toxicity of furanocoumarins to swallowtail butterflies: escalation in a coevolutionary arms race? Science 212: 927–929.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. (1990). Optimization models, quantitative genetics, and mutation. Evolution 44: 520–538.

    Article  Google Scholar 

  • Chew, F.S. & J.E. Rodman (1979). Plant resources for chemical defense. In: G.A. Rosenthal & D.H. Janzen (eds), Herbivores: Their Interactions with Secondary Plant Metabolites,pp. 271–307. New York: Academic Press.

    Google Scholar 

  • Ehrlich, P.R. & P.H. Raven (1964). Butterflies and plants: a study in coevolution. Evolution 18: 586–608.

    Article  Google Scholar 

  • Fagerström, T. (1989). Anti-herbivory chemical defense in plants: a note on the concept of cost. Am. Nat. 133: 281–287.

    Article  Google Scholar 

  • Fagerström, T., S. Larsson & O. Tenow (1987). On optimal defense in plants. Fund. Ecol. 1 73–81.

    Article  Google Scholar 

  • Farrell, B.D., D.E. Dussourd & C. Mitter (1991). Escalation of plant defense: do latex and resin canals spur plant diversification? Am. Nat. 138: 881–900.

    Article  Google Scholar 

  • Fineblum, W.L. (1991). Genetic constraints on the evolution of resistance to host plant enemies. Ph.D. dissertation. Duke University: Durham, N.C.

    Google Scholar 

  • Fritz, R.S. (1992). Community structure and species interactions of phytophagous insects on resistant and susceptible host plants. In: R.S. Fritz & E. L. Simms (eds), Plant Resistance to Herbivores and Pathogens: Ecology Evolution and Genetics,pp. 240–277. Chicago: University of Chicago Press.

    Google Scholar 

  • Futuyma, D.J. & T.E. Philippi (1987). Genetic variation and covariation in responses to host plants by Alsophila pometaria (Lepidoptera: Geometridae). Evolution 41: 269–279.

    Article  Google Scholar 

  • Houle, D. (1991). Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45: 630–648.

    Article  Google Scholar 

  • Karban, R. (1992). Plant variation: its effects on populations of herbivorous insects. In: R.S. Fritz & E.L. Simms (eds), Plant Resistance to Herbivores and Pathogens: Ecology Evolution and Genetics, pp. 195–215. Chicago: University of Chicago Press.

    Google Scholar 

  • Lenski, R.E. (1988a). Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425–432.

    Article  Google Scholar 

  • Lenski, R.E. (1988b). Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42: 433–440.

    Article  Google Scholar 

  • Marquis, R.J. (1992). The selective impact of herbivores. In: R.S. Fritz & E.L. Simms (eds), Plant Resistance to Herbivores and Pathogens: Ecology Evolution and Genetics,pp. 301–325. Chicago: University of Chicago Press.

    Google Scholar 

  • McKenzie, J.A., J.M. Dears & M.J. Whitten (1980). Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina. Aust. J. Biol. Sci. 33: 85–95.

    CAS  Google Scholar 

  • McKenzie, J.A., M.J. Whitten & M.A. Adena (1982). The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49: 1–9.

    Article  Google Scholar 

  • McNaughton, S.J. (1979). Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am. Nat. 113: 691–703.

    Article  Google Scholar 

  • Miller, J.S. (1987). Host-plant relationships in the Papilionidae (Lepidoptera): parallel cladogenesis or colonization? Cladistics 3: 105–120.

    Article  Google Scholar 

  • Mitter, C., B. Farrel & B. Weigmann (1988). The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132: 107–128.

    Article  Google Scholar 

  • Owen, D.F. (1980). How plants may benefit from the animals that eat them. Oikos 35: 230–235.

    Article  Google Scholar 

  • Owen, D.F. & R.G. Wiegert (1976). Do consumers maximize plant fitness? Oikos 27: 488–492.

    Article  Google Scholar 

  • Paige, K.N. & T.G. Whitham (1987). Overcompensation in response to mammalian herbivory: the advantage of being eaten. Am. Nat. 129: 407–416.

    Article  Google Scholar 

  • Painter, R.H. (1958). Resistance of plants to insects. Annu. Rev. Entomol. 3: 267–290.

    Article  Google Scholar 

  • Pease, C.M. & J.J. Bull (1988). A critique of methods for measuring life history trade-offs. J. Evol. Biol. 1293–303.

    Article  Google Scholar 

  • Rausher, M.D. & E.L. Simms (1989). The evolution of resistance to herbivory in Ipomoea purpurea. I. Attempting to detect selection. Evolution 43: 563–572.

    Article  Google Scholar 

  • Remick, D. (1992). Measuring the costs of reproduction. Trends Ecol. Evol. 7: 42–45.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, D.F. (1979). Evolution of plant chemical defenses against herbivory. In: G.A. Rosenthal & D.H. Janzen (eds), Herbivores: Their Interaction with Secondary Plant Metabolites, pp. 3–54. New York: Academic Press.

    Google Scholar 

  • Riska, B. (1986). Some models for development, growth, and morphometric correlation. Evolution 40: 1303–1311.

    Article  Google Scholar 

  • Riska, B. (1989). Composite traits, selection response, and evolution. Evolution 43: 1172–1191.

    Article  Google Scholar 

  • Simms, E.L. (1992). Costs of plant resistance to herbivory. In: R.S. Fritz E.L. Simms (eds), Plant Resistance to Herbivores and Pathogens: Ecology Evolution and Genetics,pp. 392–425. Chicago: University of Chicago Press.

    Google Scholar 

  • Simms, E.L. & R.S. Fritz (1990). The ecology and evolution of host-plant resistance to insects. Trends Ecol. Evol. 5: 356–360.

    Article  PubMed  CAS  Google Scholar 

  • Simms, E.L. & M.D. Rausher (1987). Costs and benefits of plant defense to herbivory. Am. Nat. 130: 570–581.

    Article  Google Scholar 

  • Simms, E.L. & M.D. Rausher (1989). The evolution of resistance to herbivory in Ipomoea purpurea. II. Natural selection by insects and costs of resistance. Evolution 43: 573–585.

    Article  Google Scholar 

  • Sultan, S.E. (1987). Evolutionary implications of phenotypic plasticity in plants. Evol. Biol. 21: 127–178.

    Article  Google Scholar 

  • Thompson, J.N. (1986). Patterns in coevolution. In: A.R. Stone & D.L. Hawkworth (eds), Coevolution and Systematics, pp. 119–143. Systematics Association Special Volume 32. Oxford: Clarendon.

    Google Scholar 

  • Vail, S.G. (1992). Selection for overcompensatory plant resonses to herbivory: a mechanism for the evolution of plant-herbivore mutualism. Am. Nat. 139: 1–8.

    Article  Google Scholar 

  • Van Noordwijk, A.J. (1989). Reaction norms in genetical ecology. Studies of the great tit exemplify the combination of ecophysiology and quantitative genetics. BioScience 39: 453–458.

    Article  Google Scholar 

  • Van Noordwijk, A.J. & G. de Jong (1986). Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128: 137–142.

    Article  Google Scholar 

  • Van Tienderen, P.H. (1991). Evolution of generalists and specialists in spatially heterogeneous environments. Evolution 45: 1317–1331.

    Article  Google Scholar 

  • Via, S. & R. Lande (1985). Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505–522.

    Article  Google Scholar 

  • Wink, M. (1983). Inhibition of seed germination by quinolizidine alkaloids. Planta 158: 365–368.

    Article  CAS  Google Scholar 

  • Wink, M. (1984a). Chemical defense of Leguminosae. Are quinolizidine alkaloids part of the antimicrobial defense system of lupins? Z. Naturforsch. 39C: 548–552.

    CAS  Google Scholar 

  • Wink, M. (1984b). Chemical defense of lupins. Mollusc-repellent properties of quinolizidine alkaloids. Z.Naturforsch. 39C: 553–558.

    CAS  Google Scholar 

  • Wink, M. & L. Witte (1985). Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell cultures. Z. Naturforsch. 40C: 767–775.

    CAS  Google Scholar 

  • Wippich, C. & M. Wink (1985). Biological properties of alkaloids: influence of quinolizidine alkaloids and gramme on the germination and development of powdery mildew,Erysiphe graminis f. sp. hordei. Experientia 41: 1477–1479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Simms, E.L. (1992). The evolution of plant resistance and correlated characters. In: Menken, S.B.J., Visser, J.H., Harrewijn, P. (eds) Proceedings of the 8th International Symposium on Insect-Plant Relationships. Series Entomologica, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1654-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1654-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4723-4

  • Online ISBN: 978-94-011-1654-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics