Skip to main content

Abstract

In the three years since the NATO meeting in Lerici (see Kerman 1988) rapid progress has been made in investigating natural sources of underwater sound. A subject that was ripe for investigation has been opened up to physical oceanogra-phers, fluid dynamicists and seismologists, as well as those specializing in underwater sound propagation. In this review I shall deal with only a small part of the total frequency spectrum, that between 1 and 80 kHz. Following pioneer work by Crowther, Prosperetti, Hollett and Heitmeyer and others at the Lerici meeting it has come to be recognised that one of the most important sources of sound in this range is from the oscillations of individual bubbles near the sea surface. Each bubble, when it is formed, emits a short acoustical pulse lasting for a few milliseconds only — a kind of birth yell. In listening to underwater sound at these frequencies we are, it appears, hearing a chorus of such birth yells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banner, M. L. and Cato, D. H. 1988 Physical mechanisms of noise generation by breaking waves — a laboratory study, pp. 429–436 in Kerman (1988).

    Google Scholar 

  • Benjamin, T. B. 1989 Note on shape oscillations of bubbles. J. Fluid Mech. 203, 419–424.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Crowther, P. A. 1988 Bubble noise creation mechanisms, pp. 131–150 in Kerman (1988).

    Google Scholar 

  • Eller, A. I. 1970 Damping constants of pulsating bubbles. J. Acoust. Soc. Amer. 47, 1469–1470.

    Article  ADS  Google Scholar 

  • Elmore, P. A., Pumphrey, H. C. and Crum, L. A. 1989 Further studies of the underwater noise produced by rainfall. Univ. of Mississippi, Tech. Rep. NCPA LC.02.89, 110 pp.

    Google Scholar 

  • Farmer, D. M. and Vagle, S. 1989 Waveguide propagation of ambient sound in the ocean-surface bubble layer. J. Acoust. Soc. Amer. 86, 1897–1908.

    Article  ADS  Google Scholar 

  • Ffowcs Williams, J. E. and Guo, Y. P. 1990 On resonant nonlinear bubble oscillations J. Fluid Mech., to appear.

    Google Scholar 

  • Kerman, B. R. 1988 Sea surface sound. Dordrecht, Reidel, 639 pp.

    Book  Google Scholar 

  • Koga, M. 1952 Bubble entrainment in breaking wind waves. Tellus, 34, 481–489.

    ADS  Google Scholar 

  • Lamb, H. 1932 Hydrodynamics, 6th ed. Cambridge Univ. Press, 738 pp.

    MATH  Google Scholar 

  • Leighton, T. G. and Walton, A. J. 1987 An experimental study of the sound emitted from gas bubbles in a liquid. Eur. J. Phys. 8, 98–104.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. 1988 Limiting forms for capillary-gravity waves. J. Fluid Mech. 194, 351–375.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M. S. 1989a Capillary-gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451–470.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M. S. 1989b Monopole emission of sound by asymmetric bubble oscillations. I. Normal modes. J. Fluid Mech. 201, 525–541.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S. 1989c Monopole emission of sound by asymmetric bubble oscillations. II. An initial-value problem. J. Fluid Mech. 201, 543–565.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M. S. 1989d Some integral theorems relating to the oscillations of bubbles. J. Fluid Mech. 204, 159–166.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M. S. 1990a Bubble noise spectra. J. Acoust. Soc. Amer. 87, 652–661.

    Article  ADS  Google Scholar 

  • Longuet-Higgins, M. S. 1990b Flow separation near the crests of short gravity waves. J. Phys. Oceanogr. 20, 595–599.

    Article  ADS  Google Scholar 

  • Longuet-Higgins, M. S. 1990c An analytic model of sound production by rain-drops. J. Fluid Mech. 214, 395–410.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M. S. 1990d A note on the sound field due to an oscillating bubble near an indented free surface. J. Fluid Mech, in press.

    Google Scholar 

  • Longuet-Higgins, M. S. 1990e Resonance in nonlinear bubble oscillations. Submitted to J. Fluid Mech. April 1990.

    Google Scholar 

  • Longuet-Higgins, M. S., Kerman, B. R. and Lunde, K. 1990 The release of air bubbles from an underwater nozzle, (m.s. in preparation).

    Google Scholar 

  • McConnell, S. O. 1983 Remote-sensing of the air-sea interface using microwave acoustics. IEEP Proc. Oceans’83, 85–92.

    Google Scholar 

  • McConnell, S. O. and Schilt, M. P. 1989 Ambiant noise measurements from 100 Hz to 80 kHz. J. Acoust. Soc. Amer. 85, S127.

    Article  Google Scholar 

  • Medwin, H. and Beaky M. M. 1989 Bubble sources of the Knudsen sea noise spectra. J. Acoust Soc. Amer. 86, 1124–1130.

    Article  ADS  Google Scholar 

  • Medwin, H. and Daniel, A. C. 1990 Acoustical measurement of bubble production by spilling breakers. J. Acoust. Soc. Amer. 88, 408–412.

    Article  ADS  Google Scholar 

  • Minnaert, M. 1933 On musical air-bubbles and the sounds of running water. Phil. Mag. 16, 235–248.

    Google Scholar 

  • Oguz, H. and Prosperetti, A. 1990 Bubble entrainment by the impact of drops on liquid surfaces. J. Fluid Mech., to appear.

    Google Scholar 

  • Prosperetti, A., Crum, L. A. and Pumphrey, H. C. 1989 The underwater noise of rain. J. Geophys. Res. 94, 3255–3259.

    Article  ADS  Google Scholar 

  • Pumphrey, H. C. and Crum, L. A. 1988 Acoustic emissions associated with drop impacts, pp. 463–483 in Kerman (1988).

    Google Scholar 

  • Pumphrey, H. C. and Crum, L. A. 1989 Sources of ambient noise in the ocean: an experimental investigation. Univ. of Mississippi, Tech. Rep. NCPA LC. 01.1989, 96 pp.

    Google Scholar 

  • Strasberg, M. 1956 Gas bubbles as sources of sound. J. Acoust. Soc. Amer. 28, 20–26.

    Article  ADS  Google Scholar 

  • Toba, Y. 1961 Drop production by bursting of air bubbles on the sea surface (III). Study by use of a wind flume. Mem. Coll. Sci. Kyoto A 29, 313–343.

    Google Scholar 

  • Updegraff, G. 1989 In situ investigation of sea surface noise from a depth of one meter. Univ. of California San Diego, Ph.D. thesis, 223 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Longuet-Higgins, M.S. (1993). Bubble Noise Mechanisms — A Review. In: Kerman, B.R. (eds) Natural Physical Sources of Underwater Sound. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1626-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1626-8_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4709-8

  • Online ISBN: 978-94-011-1626-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics