Skip to main content

Fracture and toughening in fibre reinforced polymer composites

  • Chapter
Rubber Toughened Engineering Plastics

Abstract

In order to understand the behaviour of polymeric materials for use as matrices in fibre reinforced composites and structural adhesives it is necessary to determine the fracture mechanisms of such polymers not only in the bulk form but also in the form anticipated for their expected use. Even if the resin displays excellent properties in bulk form, they may not be translated to laminated composites. This has been demonstrated by Bersch [1] who identified 24 polymers which show higher strains to failure than current epoxies. However, only five of those resins under investigation provided a higher strain to failure when contained in a composite system, as examined by the residual compression strength after impact technique. Further evidence of the inability to read across information into the composite system was provided by other shortcomings in properties, especially the elastic modulus, which rendered many of the polymers unsuitable for use as matrices in a composite system. Other attempts have been made to improve the composite toughness by improving the toughness of the polymer systems. These also have had disappointing results, in that a large increase in polymer toughness has not necessarily been found to give a proportionate increase in composite toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bersch, C. F. (1982) What we have done. Proc. Critical Review: Techniques for Characterisation of Composite Materials, Army Materials and Mechanics Research Centre, MA. AMMRC MS Report 82-3, pp. 487–9.

    Google Scholar 

  2. Scott, J. M. and Phillips, D. C. (1975) Carbon fibre composites with rubber toughened matrices. Journal of Materials Science, 10, 551–62.

    Article  CAS  Google Scholar 

  3. Bascom, W. D, Bitner, J. L, Moulton, R. J. and Siebart, A. R. (1980) The inter-laminar fracture of organic-matrix, woven reinforcement composites. Composites, 1, 9–18.

    Article  Google Scholar 

  4. Bascom, W. D, Ting, R. Y, Moulton, R. J, Riew, C. K. and Siebart, A. R. (1981) The fracture of an epoxy composite containing elastomeric modifiers. Journal of Materials Science, 16, 2657–64.

    Article  CAS  Google Scholar 

  5. Vanderkley, P. S. (1981) Mark I-mode II delamination fracture toughness of a uni-directional graphite/epoxy composite. Masters Thesis, Texas A & M University, College Station, TX, December 1981.

    Google Scholar 

  6. Cohen, R. N. (1982) Effect of resin toughness on fracture behaviour of graphite/epoxy composites. Masters Thesis, Texas A & M University, College Station, TX, December 1982.

    Google Scholar 

  7. Bradley, W. L. and Cohen, R. N. (1983) Matrix deformation and fracture in graphite reinforced epoxies. ASTM Symposium — Delamination and Debonding of Materials, Pittsburgh, PA, November 8–10, 1983.

    Google Scholar 

  8. Kanninen, M. F, Rybicki, E. F. and Brinson, H. F. (1977) A critical look at current applications of fracture mechanics to the failure of fibre reinforced composites. Composites, 1, 17–22.

    Article  Google Scholar 

  9. Wang, S. S., Chin, E. S., Yu, T. P. and Goetz, D. P. (1983) Fracture of random short fibre SMC composite. Journal of Composite Materials, 17, 299–315.

    Article  Google Scholar 

  10. Folkes, M. J. (1982) Short Fibre Reinforced Plastics, Research Studies Press, Wiley, New York.

    Google Scholar 

  11. Blumentritt, B. F., Vu, B. T. and Cooper, S. L. (1975) Fracture in orientated short fibre reinforced thermoplastics. Composites, 5, 105–14.

    Article  Google Scholar 

  12. Harris, B. (1986) Engineering Composite Materials, Institute of Metals.

    Google Scholar 

  13. Cooper, G. A. (1970) The fracture toughness of composites reinforced with weakened fibres. Journal of Materials Science, 5, 645–54.

    Article  CAS  Google Scholar 

  14. Piggot, M. R. (1970) Theoretical estimation of fracture toughness of fibrous composites. Journal of Materials Science, 5, 669–75.

    Article  Google Scholar 

  15. McGrath, G. C. (1988) Structure and properties of carbon fibre reinforced aromatic thermoplastics. PhD Thesis, Sheffield City Polytechnic.

    Google Scholar 

  16. Barlow, C. Y., Ward, M. V. and Windle, A. H. (1985) The influence of microstructure on the toughness of carbon fibre/plastic composites. Proceedings 6th International Conference on Deformation Yield and Fracture of Polymers, April 1985, pp. 14.1–14.4.

    Google Scholar 

  17. Chai, H. (1984) The characterisation of mode I delamination failure in non woven, multi-directional laminates. Composites, 15, 277–90.

    Article  Google Scholar 

  18. Greenhalgh, E. S. and McGrath, G. C. (1991) Fracture analysis of thermoplastic welds. 1st International Conference on Deformation and Fracture of Composites, Manchester, March 25–27, 1991.

    Google Scholar 

  19. Wang, S. S., Suemasu, H. and Zahlan, N. M. (1984) Interlaminar fracture of random short fibre SMC composite. Journal of Composite Materials, 18, 574–94.

    Article  CAS  Google Scholar 

  20. Rayson, H. W., McGrath, G. C. and Collyer, A.A. (1986) Fibres, whiskers and flakes for composite applications, in Mechanical Properties of Reinforced Thermoplastics (eds D. W. Clegg and A. A. Collyer), Applied Science, London, Chapter 2.

    Google Scholar 

  21. Jones, R. M. (1975) Mechanics of Composite Materials, McGraw-Hill, New York.

    Google Scholar 

  22. Ashton, J. E., Halpin, J. E. and Petit, P. H. (1969) Primer on Composite Materials: Analysis, Technomic, Stamford, CT.

    Google Scholar 

  23. Greaves, L. J. (1987) Stiffness matrices of a carbon fibre cloth laminate. RAE Technical Report 87047.

    Google Scholar 

  24. Reifsnider, K. L. and Talung, A. (1980) Analysis of fatigue damage in composite laminates. International Journal of Fatigue, 2, 3–11.

    Article  Google Scholar 

  25. Reifsnider, K. L. and Highsmith, A. (1981) Advances in fracture research. ICF5, Cannes, Vol. 1.

    Google Scholar 

  26. Reifsnider, K. L. and Jamison, R. (1982) Fracture of fatigue-loaded composite laminates. International Journal of Fatigue, 4, 187–97.

    Article  Google Scholar 

  27. Boniface, L. and Bader, M. G. (1986) The micromechanics of damage initiation and development under static and fatigue loading of CFRP XAS/914 and E-glass laminates. D/ERI/9/4/2064/066 XR/MAT.

    Google Scholar 

  28. Reifsnider, K. L., Henneke, E. G., Stinchcomb, W. and Duke, J. C. (1983) Damage mechanics and NDE of composite laminates. Mechanics of Composite Materials, Recent Advances, 19, 399–420.

    Google Scholar 

  29. Rosen, B. W. (1964) Tensile failures of fibrous composites. AIAA Journal, 2, 1985–91.

    Article  Google Scholar 

  30. Zweben, C. (1968) Tensile failures of fibrous composites. AIAA Journal, 6, 2325–31.

    Article  Google Scholar 

  31. Curtis, P. T. (1986) A comparison of the mechanical properties of improved carbon fibre composite materials. RAE TR 86021.

    Google Scholar 

  32. Talreja, R. (1981) Fatigue of composite materials: damage mechanisms and fatigue life diagrams. Proceedings of the Royal Society of London, Series A, 378(1775), 461–75.

    Article  Google Scholar 

  33. Bailey, J. E. and Parvizi, A. (1981) On fibre debonding effects and the mechanism of transverse-ply failure in cross ply laminates of glass fibre/thermoset composites. Journal of Materials Science, 16, 649–59.

    Article  CAS  Google Scholar 

  34. Bailey, J. E., Curtis, P. T. and Parvizi, A. (1979) Proceedings of the Royal Society of London, Series A, 366, 599–623.

    Article  CAS  Google Scholar 

  35. Hashin, Z. (1985) Analysis of cracked laminates: a variational approach. Mechanics of Materials, 4, 121–36.

    Article  Google Scholar 

  36. Ogin, S. L. and Smith, P. A. (1987) A model for matrix cracking in cross-ply laminates. ESA Journal, 11, 45–60.

    Google Scholar 

  37. Griffith, A. A. (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, Series A, 221, 163–98.

    Article  Google Scholar 

  38. Berry, J. P. (1961) Fracture processes in polymeric materials: I. The surface energy of polymethylmethacrylate. Journal of Polymer Science, 50, 107–15.

    Article  CAS  Google Scholar 

  39. Whitney, J. M., Browning, C. E. and Hoogsteder, W. (1982) A double cantilever beam test for characterising mode one delamination of composite materials. Journal of Reinforced Plastics and Composites, 1, 297–313.

    Article  Google Scholar 

  40. Hartness, J. T. (1982) Polyetheretherketone matrix composites. 14th National SAMPE Technical Conference, October 12–14, 1982, pp. 26–37.

    Google Scholar 

  41. Carlile, D. R. and Leach, D. C. (1983) Damage and notch sensitivity of graphite/PEEK composites. 15th National SAMPE Technical Conference, October 1983, pp. 82–93.

    Google Scholar 

  42. Donaldson, S. L. (1985) Fracture toughness testing of graphite/epoxy and graphite/PEEK composites. Composites, 16(2), 103–12.

    Article  CAS  Google Scholar 

  43. Blundell, D. J. and Osborn, B. N. (1983) The morphology of poly(aryl-ether-ether-ketone). Polymer, 24, 953–58.

    Article  CAS  Google Scholar 

  44. Irwin, G. R. (1957) Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, 361–4.

    Google Scholar 

  45. Timoshenko, S. D. (1955) Strength of Materials, Part 1, 3rd edn, Van Nostrand, New York.

    Google Scholar 

  46. Devitt, D. F., Schapery, R. A. and Bradley, W. L. (1980) A method for determining the mode I delamination fracture toughness of elastic and viscoelastic composite materials. Journal of Composite Materials, 14, 270–85.

    CAS  Google Scholar 

  47. Crandall, S. H. (1956) Engineering Analysis, McGraw-Hill, New York.

    Google Scholar 

  48. Barlow, C. Y. and Windle, A. H. (1985) Razor blade test for composites toughness. Journal of Materials Science Letters, 4, 233–4.

    Article  Google Scholar 

  49. Williams, J. G. (1987) Large displacements and end block effects in the DCB interlaminar test in modes I and II. Journal of Composite Materials, 21, 330–48.

    Article  Google Scholar 

  50. Williams, J. G. (1987) Large displacement effects in the DCB test for interlaminar fracture in modes I and II. Proc. ICC MVI/ECCM, Vol. 3, Applied Science, Barking, pp. 233–42.

    Google Scholar 

  51. Williams, J. G. (1989) End corrections for orthotropic DCB specimens. Composite Science and Technology, 35, 367–79.

    Article  Google Scholar 

  52. Hashemi, S., Kinloch, A. J. and Williams, J. G. (1990) The effects of geometry, rate and temperature on the mode I, mode II and mixed mode I/II interlaminar fracture of carbon-fibre/polyetheretherketone composites. Journal of Composite Materials, 24, 918–56.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McGrath, G.C. (1994). Fracture and toughening in fibre reinforced polymer composites. In: Collyer, A.A. (eds) Rubber Toughened Engineering Plastics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1260-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1260-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4549-0

  • Online ISBN: 978-94-011-1260-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics