Skip to main content

The Magnetic Chromosphere

  • Chapter
Solar Surface Magnetism

Part of the book series: NATO ASI Series ((ASIC,volume 433))

Abstract

Chromospheres - hot luminous shells surrounding stars - radiate predominantly in spectral lines at temperatures exceeding the underlying photospheric temperatures. This temperature inversion can be created and sustained only by non-radiative processes. Although they exist in almost every spectral class, chromospheres are more conspicuous in stars with convective envelopes. The identity of sources of mechanical or electrodynamic energy remains elusive. Chromospheres compel attention because of their challenging physics, their significance to the photochemistry of the terrestrial atmosphere, and their role in the variable luminosity of stars. Observations show that magnetic fields are closely related to the distribution, fine structure, and dynamism of chromospheric emission. This review considers recent research aimed at defining their role in chromospheric physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alissandrakis, C. E., Tsiropoula, G., and Mein, P. 1990. Physical parameters of solar Ha absorption features derived with the cloud model. Astron. Astrophys. 230, 200–212.

    ADS  Google Scholar 

  • Athay, R.G. 1976. The Solar Chromosphere and Corona: Quiet Sun (Dordrecht: D. Reidel).

    Google Scholar 

  • Athay, R.G. 1984. The origin of solar spicules and heating of the lower transition region. Astrophys. J. 287, 412–417.

    Article  ADS  Google Scholar 

  • Avrett, E. H. 1985. Recent thermal models of the solar chromosphere. In Chromospheric Diagnostics and Modelling ,ed. B. W. Lites (Sunspot: Sacramento Peak Observatory), 67–127.

    Google Scholar 

  • Ayres, T. R., Testerman, L., and Brault, J, W. 1986. Fourier transform spectrometer observations of solar carbon monoxide. II. Simultaneous cospatial measurements of the fundamental and first overtone bands, and Ca II K, in quiet and active regions. Astrophys. J. 304, 542–559.

    Article  ADS  Google Scholar 

  • Beckers, J. M. 1962. Motions in the chromosphere near sunspots. Australian J. Phys. 15,327–332.

    Article  ADS  Google Scholar 

  • Beckers, J. M. 1972. Solar spicules. Ann. Rev. Astron. Astrophys. 10, 73–100.

    Article  ADS  Google Scholar 

  • Biermann, L. 1946. Zur Deutung der chromosphärischen Turbulenz und des UV-Strahlung der Donne. Naturwiss. 33, 118.

    Article  ADS  Google Scholar 

  • Bray, R. J. 1974. High resolution photography of the solar chromosphere. XIII. The contrast profiles of sunspot fibrils. Solar Phys. 38, 377–388.

    Article  ADS  Google Scholar 

  • Bray, R. J., and Loughhead, R. E. 1974. The Solar Chromosphere (Chapman and Hall: London).

    Google Scholar 

  • Bruzek, A. and Durrant, C. J. 1977. Illustrated Glossary for Solar and Terrestrial Physics. (Dordrecht: D. Reidel).

    Book  Google Scholar 

  • Cheng, Q.-Q. 1992a. Fluid motions in the solar atmosphere. I. On the origin and decay of spicules. Astron. Astrophys. 266, 537–548.

    ADS  Google Scholar 

  • Cheng, Q.-Q. 1992b. Fluid motions in the solar atmosphere. II. A spicule model with emission lines. Astron. Astrophys. 266, 549–559.

    ADS  Google Scholar 

  • Cram, L.E. 1975. Interpretation of Ha contrast profiles of chromospheric fine structures. Solar Phys. 42, 53–66.

    Article  ADS  Google Scholar 

  • Deubner, F.-L. 1990. Observations of waves and oscillations. In Mechanisms of Chromospheric and Coronal Heating ,eds. P. Ulmschneider, E. R. Priest, and R. Rosner (Berlin: Springer-Verlag), 6–18.

    Google Scholar 

  • Deubner, F.-L. and Fleck, B. 1990. Dynamics of the solar atmosphere. III. Cell-network distinctions of chromospheric oscillations. Astron. Astrophys. 228, 506–512.

    ADS  Google Scholar 

  • Reck, B and Deubner, F.-L. 1989. Dynamics of the solar atmosphere. II. Standing waves in the solar chromosphere. Astron. Astrophys. 224, 245–252.

    ADS  Google Scholar 

  • Foukal, P. 1971. Ha fine structure and the chromospheric field. Solar Phys. 20, 298–309.

    Article  ADS  Google Scholar 

  • Foukal, P. and Lean, J. 1988. Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347–357.

    Article  ADS  Google Scholar 

  • Gaizauskas, V. 1985. Observations of the fine structure of the chromosphere. In Chromospheric Diagnostics and Modelling ,ed. B. W. Lites (Sunspot: Sacramento Peak Observatory), 25–47.

    Google Scholar 

  • Giovanelli, R. G. 1980. An exploratory two-dimensional study of the coarse structure of network magnetic fields. Solar Phys. 68, 49–69.

    Article  ADS  Google Scholar 

  • Grossmann-Doerth, U. and von Uexküll, M. 1971. Spectral investigations of chromospheric fine structure. Solar Phys. 20, 31–46.

    Article  ADS  Google Scholar 

  • Grossmann-Doerth, U. and von Uexküll, M. 1973. Spectral investigations of chromospheric fine structure. II. The nature of the mottles and of a model of the overall structure. Solar Phys. 28 ,319–332.

    Article  ADS  Google Scholar 

  • Grossmann-Doerth, U. and Schmidt, W. 1992. Chromospheric fine structure revisited. Astron. Astrophys. 264, 236–242.

    ADS  Google Scholar 

  • Haerendel, G. 1992. Weakly damped Alfvén waves as drivers of solar chromospheric spicules. Nature 360, 241–243.

    Article  ADS  Google Scholar 

  • Harvey, K. L. 1992. Measurements of solar magnetic fields as an indicator of solar activity evolution. In “Proceedings SOLERS22 Workshop”, ed. R.F. Donnelly (NOAA ERL: Boulder), 113–129.

    Google Scholar 

  • Harvey, K.L. 1992. (ed.)The Solar Cycle. ASP Conf. Series 27 (San Francisco: American Society of the Pacific).

    Google Scholar 

  • Heinzel, P. and Schmieder, B. 1993. Chromospheric fine structure: black and white mottles. Astron. Astrophys. (submitted).

    Google Scholar 

  • Heristchi, D. and Mouradian, Z. 1992. On the inclination and the axial velocity of spicules. Solar Phys. 142, 21–34.

    Article  ADS  Google Scholar 

  • Hollweg, J. V. 1982. On the origin of solar spicules. Astrophys. J. 257, 345–353.

    Article  ADS  Google Scholar 

  • Howard, R. 1959. Observation of solar magnetic fields. Astrophys. J. 130, 193–201.

    Article  ADS  Google Scholar 

  • Kalkofen, W. 1989. Chromospheric Heating. Astrophys. J. 346, L37–L40.

    Article  ADS  Google Scholar 

  • Kalkofen, W. 1991. Heating of the chromosphere. In Solar Interior and Atmosphere ,eds. A.N. Cox, W.C. Livingston, and M.S. Mathews (Tucson: U. Arizona Press), 911– 932.

    Google Scholar 

  • Keller, C. U. 1992. Resolution of magnetic flux tubes on the Sun. Nature 359, 307–308.

    Article  ADS  Google Scholar 

  • Lean, J. L., Livingston, W. C., White, O. R. and Skumanich, A. 1984. Modelling solar spectral irradiance variations at ultraviolet wavelengths. In Solar Irradiance Variations on Active Region Time Scales ,eds. B. J. Labonte, G. A. Chapman, H. S. Hudson, and R. C. Willson (Washington: NASA CP-2310), 253–289.

    Google Scholar 

  • Leighton, R.B. Observation of solar magnetic fields in plage regions. Astrophys. J. 130, 366–380.

    Google Scholar 

  • Linsky, J. L. and Stencel, R. E. (eds.) 1987. Cool Stars, Stellar Systems, and the Sun.. Lecture Notes in Physics 291 (Berlin: Springer-Verlag).

    Google Scholar 

  • Lites, B. W., Rutten, R. J., and Kalkofen, W. 1993. Dynamics of the solar chromosphere. I Long-period network oscillations. Astrophys. J. 414, 345–356.

    Article  ADS  Google Scholar 

  • Livingston, W.C. and Harvey, J. W. 1975. A new component of solar magnetism -The inner network fields. Bull. Amer. Astron. Soc. 7, 346 (abstract).

    ADS  Google Scholar 

  • Mein, P. and Mein, N. 1988. Differential cloud models for solar velocity field measurements. Astron. Astrophys. 203, 162–169.

    ADS  Google Scholar 

  • Narain, U. and Ulmschneider, P. 1990. Chromospheric and Coronal Heating Mechanisms. Space Sci. Rev. 54, 377–445.

    Article  ADS  Google Scholar 

  • Nishikawa, T. 1988. Spicule observations at high spatial resolution. PASJ ,40, 613–625.

    MathSciNet  ADS  Google Scholar 

  • Parker, E. N. 1988. Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474–479.

    Article  ADS  Google Scholar 

  • Rutten, R. G. M., Schrijver, C. J., Lemmens, A. F. P., and Zwaan, C. 1991. Magnetic activity in cool stars. XVII. Minimum radiative losses from the outer atmosphere. Astron. Astrophys. 252, 203–219.

    ADS  Google Scholar 

  • Rutten, R.J. and Uitenbroek, H. 1991. Ca II H2V and K2V Cell Grains. Solar Phys. 134, 15–71.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. 1986. Ph.D Thesis. Stellar Magnetic Activity. University of Utrecht, The Netherlands.

    Google Scholar 

  • Schrijver, C. J. 1987a. Relations between radiative fluxes measuring stellar activity, and evidence for two components in stellar chromospheres. Astron. Astrophys. 172, 111–123.

    ADS  Google Scholar 

  • Schrijver, C. J. 1987b. Solar active regions: Radiative intensities and large-scale parameters of the magnetic field. Astron. Astrophys. 180, 241–252.

    ADS  Google Scholar 

  • Schrijver, C. J. 1988. Radiative fluxes from the outer atmosphere of a star like the Sun: a construction kit. Astron. Astrophys. 189, 163–172.

    ADS  Google Scholar 

  • Schrijver, C. J. 1991. Relations between activity and magnetic fields. In Mechanisms of Chromospheric and Coronal Heating ,eds. P. Ulmschneider, E. R. Priest, and R. Rosner (Berlin: Springer-Verlag), 257–272.

    Google Scholar 

  • Schrijver, C. J. 1992. The basal and strong field components of the solar atmosphere. Astron. Astrophys. 258, 507–520.

    ADS  Google Scholar 

  • Schrijver, C. J. 1993. Relations between the photospheric field and the emission from the outer atmospheres of cool stars. III. The chromospheric emission from individual flux tubes. Astron. Astrophys. 269, 395–402.

    ADS  Google Scholar 

  • Schrijver, C. J., Zwaan C., Maxson, C. W., and Noyes, R. W. 1985. A study of ultraviolet and x-ray emissions of selected solar regions. Astron. Astrophys. 149, 123–134.

    ADS  Google Scholar 

  • Schrijver, C. J., Coté, J., Zwaan, C., and Saar, S.H. 1989. Relations between the photospheric field and the emission from the outer atmospheres of cool stars. I. the Solar Ca II K line core emission. Astrophys. J. 337, 964–976.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. and Harvey, K. L. 1989. The distribution of solar magnetic fluxes and the nonlinearity of stellar flux-flux relations. Astrophys. J. 343, 481–488.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. and Harvey, K. L. 1994. Global properties of the solar magnetic cycle. Solar Phys. (in press).

    Google Scholar 

  • Schwarzschild, M. 1948. On noise arising from the solar granulation. Astrophys. J. 107, 1–5.

    Article  ADS  Google Scholar 

  • Simon, G. W. and Leighton, R. B. 1964. Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120–1147.

    Article  ADS  Google Scholar 

  • Sivaraman, K.R., Jagdev Singh, Bagare, S. P., and Gupta, S.S. 1987. Chromospheric Ca II K-line variations in the Sun as a star over a solar cycle. Astrophys. J. 313, 456–462.

    Article  ADS  Google Scholar 

  • Skumanich, A., Smythe, C., and Frazier, E. N. 1975. On the statistical description of inhomogeneities in the quiet solar atmosphere. I. Linear regression analysis and absolute calibration of multichannel observations of the Ca+ emission network. Astrophys. J. 200,747–764.

    Article  ADS  Google Scholar 

  • Skumanich, A., Lean, J. L., White, O. R., and Livingston, W. C. 1984. The Sun as a star: Three component analysis of chromospheric variability in the calcium K line. Astrophys. J. 282, 776–783.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Steiner, O., and Uitenbroek, H. 1991. Two-dimensional models of the solar chromosphere. I. The Ca II K line as a diagnostic: 1.5-D radiative transfer. Astron. Astrophys. 250, 220–234.

    ADS  Google Scholar 

  • Spruit, H. C. 1981. Magnetic flux tubes. In The Sun as a Star ,ed. S. Jordan (Washington: NASA SP-450), 385–412.

    Google Scholar 

  • Steinitz, R., Gebbie, K. B., and Bar, V. 1977. The embedded feature model for the interpretation of chromospheric contrast profiles. Astrophys. J. 213, 269–277.

    Article  ADS  Google Scholar 

  • Stenflo, J. O. 1973. Magnetic-field structure of the photospheric network. Solar Phys. 32, 41–63.

    Article  ADS  Google Scholar 

  • Sterling, A. C. and Hollweg, J. V. 1988. The rebound shock model for solar spicules:Dynamics at long times. Astrophys. J. 327, 950–963.

    Article  ADS  Google Scholar 

  • Shibata, K. and Suematsu, Y. 1982. Why are spicules absent over plages and long under coronal holes? Solar Phys. 78, 333–345.

    Article  ADS  Google Scholar 

  • Suematsu, Y.,Shibata, K., Nishikawa, T., and Kitai, R. 1982. Numerical hydrodynamics of the jet phenomena in the solar atmosphere. I. Spicules. Solar Phys. 75, 99–118.

    Article  ADS  Google Scholar 

  • Suematsu, Y., Wang, H., and Zirin, H. 1993. High-resolution observation of disk spicules I. Evolution and kinematics of spicules. BBSO Preprint #356, Caltech.

    Google Scholar 

  • Tuominen, I., Moss, D. and Rüdiger, G. (eds.) 1991. The Sun and cool stars: activity , magnetism, dynamos. Lecture Notes in Physics 380. (Berlin: Springer-Verlag)

    Google Scholar 

  • Ulmschneider, P., Priest, E. R., and Rosner, R. (eds.) 1991. Mechanisms of Chromospheric and Coronal Heating ,(Berlin: Springer-Verlag).

    Google Scholar 

  • Vernazza, J. E., Avrett, E. H., and Loeser, R. 1981. Structure of the Solar Chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. 45, 635–725.

    Article  ADS  Google Scholar 

  • von Uexküll, M., Kneer, F., Malherbe, J. M., and Mein, P. 1989. Oscillations of the Sun’s chromosphere. V. Importance of network dynamics for chromospheric heating. Astron. Astrophys. 208, 290–296.

    ADS  Google Scholar 

  • White, O. R. and Livingston, W. C. 1978. Solar luminosity variation. II. Behavior of calcium H and K variation at solar minimum and the onset of cycle 21. Astrophys. J. 226, 679–686.

    Article  ADS  Google Scholar 

  • White, O. R. and Livingston, W. C. 1981. Solar luminosity variation. III. Calcium K variation from solar minimum to maximum in cycle 21. Astrophys. J. 249, 798–816.

    Article  ADS  Google Scholar 

  • White, O. R., Livingston, W. C., and Wallace, L. 1987. Variability of chromospheric and photospheric lines in solar cycle 21. J. Geophys. Res. 92, 823–827.

    Article  ADS  Google Scholar 

  • White, O. R., Skumanich, A., Lean, J., Livingston, W. C., and Keil, S. L. 1992. The Sun in a noncycling state. Publ. Astron. Soc. Pac. 104, 1139–1143.

    Article  ADS  Google Scholar 

  • Wilson, O. C. 1978. Chromospheric variations in main-sequence stars. Astrophys. J. 226, 379–396.

    Article  ADS  Google Scholar 

  • Zirin, H. 1974. The magnetic structure of plages. In Chromospheric Fine Structure ,ed. R.G. Athay IAU Symp. 56 (Dordrecht: Reidel), 161–175.

    Chapter  Google Scholar 

  • Zwaan, C. 1978. On the appearance of magnetic flux in the solar photosphere. Solar Phys. 60, 213–240.

    Article  ADS  Google Scholar 

  • Zwaan, C. 1991. Magnetic activity across the Hertzsprung-Russell diagram. In Mechanisms of Chromospheric and Coronal Heating ,eds. P. Ulmschneider, E. R. Priest, and R. Rosner (Berlin: Springer-Verlag), 241–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaizauskas, V. (1994). The Magnetic Chromosphere. In: Rutten, R.J., Schrijver, C.J. (eds) Solar Surface Magnetism. NATO ASI Series, vol 433. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1188-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1188-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4519-3

  • Online ISBN: 978-94-011-1188-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics