Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 429))

  • 368 Accesses

Abstract

Aspects of a generalized representation theory of current algebras in 3 + 1 dimensions axe discussed. Rules for a systematic computation of vacuum expectation values of products of currents are described. Their relation to gauge group actions in bundles of fermionic Fock spaces and to the sesquilinear form approach of Langmann and Ruijsenaars is explained. The regularization for a construction of an operator cocycle representation of the current algebra is explained. An alternative formula for the Schwinger terms defining gauge group extensions is written in terms of Wodzicki residue and Dixmier trace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Araki, H.: Bogoliubov automorphisms and Fock representations of canonical anticommutation relations. In: Contemporary Mathematics. American Mathematical Society, vol. 62 (1987).

    Google Scholar 

  2. Atiyah, M. and I. Singer: Dirac operators coupled to vector potentials. Proc. Natl. Acad. Sci. USA 81, 2597 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardakci, K. and M.B. Halpern. Phys. Rev. D3. p. 2493 (1971)

    MathSciNet  Google Scholar 

  4. M.B. Halpern, Phys. Rev. D4, p. 2398 (1971).

    Google Scholar 

  5. Carey, A. and C.A. Hurst: A note on boson-fermion correspondence and infinite-dimensional groups. Commun. Math. Phys. 98, 435 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  6. Connes, A.: Noncommutative differential geometry. Publ. Math. IHES 62, 81 (1986).

    Google Scholar 

  7. Frenkel, I.: Two constructions of affine Lie algebra representations and bosonfermion correspondence in quantum field theory. J. Funct. Anal. 44, 259 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  8. Finkelstein, D. and J. Rubinstein: Connection between spin, statistics, and kinks. J. Math. Phys. 9, 1762 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  9. Faddeev, L., and S. Shatasvili: Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies. Theor. Math. Phys. 60, 770 (1984).

    Article  Google Scholar 

  10. Fujii, K., and M. Tanaka: Universal Schwinger cocycles of current algebras in (D + 1) dimensions: Geometry and physics. Commun. Math. Phys. 129, 267 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  11. Itoh, T. and K. Odaka: A particle-picture approach to anomalies in chiral gauge theory. Fortschr. Phys. 39, 557 (1991).

    Article  MathSciNet  Google Scholar 

  12. Jackiw, R. and K. Johnson: Anomalies of the axial vector current. Phys. Rev. 182, 1459 (1969).

    Article  Google Scholar 

  13. Langmann, E.: On Schwinger terms in (3 + 1) dimensions. Proceedings of the XXVII Karpacz Winter School of Theoretical Physics, Feb. 1991. Also: Proc. of the colloquim “Topological and Geometrical Methods in Field Theory”, Turku, Finland, May 1991 (eds. by J. Mickelsson and O. Pekonen, World Scientific, Singapore, 1992).

    Google Scholar 

  14. Lundberg, L.-E.: Quasi-free second “quantization”. Commun. Math. Phys. 50, 103 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. Mickelsson, J.: Commutator anomaly and the Fock bundle. Commun. Math. Phys. 127, 285 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  16. —: Vacuum expectation values of products of chiral currents in 3 + 1 dimensions. M.I.T. preprint CTP#2107, June 1992. To be publ. in Commun. Math. Phys.

    Google Scholar 

  17. —: Current Algebras and Groups. Plenum Press, New York and London (1989).

    MATH  Google Scholar 

  18. —: Chiral anomalies in even and odd dimensions. Commun. Math. Phys. 97, 361 (1985).

    Google Scholar 

  19. Mickelsson, J. and S. Rajeev: Current algebras in (d + 1) dimensions and determinant bundles over infinite-dimensional Grassmannians. Commun. Math. Phys. 116, 365 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  20. Pickrell. D: On the Mickelsson-Faddeev extension and unitary representations. Commun. Math. Phys. 123, 617 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. Pressley, A. and G. Segal: Loop Groups. Clarendon Press. Oxford (1986).

    MATH  Google Scholar 

  22. Ruijsenaars, S.N.M.: On Bogoliubov transformations for systems of relativistic charged particles. J. Math. Phys. 18, 517 (1977).

    Article  MathSciNet  Google Scholar 

  23. —: Index formulas for generalized Wiener-Hopf operators and bosonfermion correspondence in 2N dimensions. Commun. Math. Phys. 124, 553 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  24. Segal, G.: Faddeev’s anomaly in the Gauss’ law. Preprint (unpublished) Oxford (1985).

    Google Scholar 

  25. —: Unitary representations of some infinite-dimensional groups. Commun. Math. Phys. 80, 301 (1981).

    Article  MATH  Google Scholar 

  26. Sorkin, R.: A general relation between kink-exchange and kink-rotation. Commun. Math. Phys. 115, 421 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  27. Várilly, J., and J.M. Gracia-Bondia: Connes’ noncommutative differential geometry and the standard model. Preprint, Madrid (1992).

    Google Scholar 

  28. Witten, E.: Current algebra, baryons, and quark confinement. Nucl. Phys. B223, 433 (1983).

    Google Scholar 

  29. Wodzicki, M.: Noncommutative residue. In: K-theory, Arithmetic and Geometry, Springer Lecture Notes in Math. 1289 (ed. by Yu.I. Manin) p. 320-399 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mickelsson, J. (1994). Current Algebras as Hilbert Space Operator Cocycles. In: Tanner, E.A., Wilson, R. (eds) Noncompact Lie Groups and Some of Their Applications. NATO ASI Series, vol 429. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1078-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1078-5_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4470-7

  • Online ISBN: 978-94-011-1078-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics