Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 296))

Abstract

Let \(\left\{ {{\alpha _n}:n = 1,2,\ldots } \right\}\) be a sequence of (not necessarily distinct) points on the unit circle. Set \({\omega _0}(z) \equiv 1,{\omega _n}(z) = (z - {\alpha _1})(z - {\alpha _2}) \ldots (z - {\alpha_n})for n = 1,2,\ldots,\)and let G denote the linear space spanned by the functions\(\left\{ {1/{\omega _n}:n = 0,1,2,\ldots,} \right\}\).LetMbe a quasi-definite linear functional on\(\mathcal{L} \cdot \mathcal{L}\), and define the inner product\(, by f,g = M(f{g_ * })\), where \(g * (z) = \overline {g(1\left){\vphantom{1z}}\right.\!\!\!\!\overline{\,\,\,\vphantom 1{z}})}\). (In particular M may be a positive definite functional given by\(M(f) = \int_{ - \pi }^\pi {f({e^{it}})d\mu (t)},\),where µ is a measure such that all functions in \(\mathcal{L} \cdot \mathcal{L}\) are µ-integrable).Let \(\left\{ {{\varphi _n}} \right\}\)be an orthogonal system obtained from the basis \(\left\{ {1/{\omega _n}} \right\}\) by the Gram-Sdunidt method and define the associated

functions\(\left\{ {{\varphi _n}} \right\}\) by \({\varphi _n}(z) = M(\frac{{t + z}}{{t - z}}\left[ {{\varphi _n}(t) - {\varphi _n}(z)} \right])\).Interpolation of \({\psi _n}/{\varphi _n}\)to \(M(\frac{{t + z}}{{t - z}})\) (or to the formal series

\({\mu _0} + 2\sum\nolimits_{m = 1}^\infty {{\mu _m}z{\omega _{m - 1}}} (z),{\mu _m} = M(1/{\omega _m})\) at interpolation points \({\alpha _k}\)is

discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner, New York, 1965.

    MATH  Google Scholar 

  2. C. Brezinski, Padé-Type Approximants and Orthogonal Polynomials, Birkhäuser, Basel/Boston/Stuttgart, 1980.

    Google Scholar 

  3. A. Bultheel, Laurent series and their Padé approximations, Operator Theory: Advances and Applications, vol. 27, Birkhäuser Verlag, Basel, 1987.

    Book  MATH  Google Scholar 

  4. A. Bultheel and P. Dewilde, Orthogonal functions related to the Nevanlinna-Pick problem, Mathematical Theory of Networks and Systems, Proceedings MTNS Conference, Delft, The Netherlands (Ed. P. Dewilde) Western Periodicals, North Hollywood, 1979, 207–211.

    Google Scholar 

  5. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen and O. Njåstad, A Szegö theory for rational functions, Technical Report TW-131, K.U. Leuven, Dept. of Computer Science, May 1990.

    Google Scholar 

  6. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen and O. Njåstad, The computation of orthogonal rational functions and their interpolating properties, Numerical Algorithms 2 (1992) 85–114.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen and O. Njåstad, Moment problems and orthogonal functions, J. Comp. Appl. Math., 48 (1993) 49–68.

    Article  MATH  Google Scholar 

  8. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen and O. Njåstad, Orthogonal rational functions with poles on the unit circle, J. Math. Anal. Appl., to appear.

    Google Scholar 

  9. A. Bultheel, P. Gonzalez-Vera, E. Hendriksen and O. Njåstad, Orthogonal rational functions on the unit circle and the real line, Koninldijke Akademie van Wetenshappen Verhandelingen, Afd. Natuurkunde, Erste Reeks.

    Google Scholar 

  10. T.S. Chihara, Introduction to Orthogonal Polynomials, Mathematics and Its Applications Series, Gordon & Breach, New York/London/Paris, 1978.

    MATH  Google Scholar 

  11. M.M Djrbashian, A survey on the theory of orthogonal systems and some open problems, Orthogonal Polynomials: Theory and Practice (Ed. P. Nevai, Kluwer, Dordrecht/Boston/London 1990) 135–146.

    Chapter  Google Scholar 

  12. M.A. Gallucci and W.B. Jones, Rational Approximations corresponding to Newton series (Newton-Padé approximants), J. Approximation Theory 17 (1976) 366–392.

    Article  MathSciNet  MATH  Google Scholar 

  13. W.B. Jones, O. Njåstad and W.J. Thron, Orthogonal Laurent polynomials and the strong Hamburger moment problem, J. Math. Anal. Appl. 98 (1984) 528–554.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Njåstad, An extended Hamburger moment problem, Proc. Edinburgh Math. Soc. Ser. II, 28 (1985) 167–183.

    Article  Google Scholar 

  15. O. Njåstad, Multipoint Padé approximation and orthogonal rational functions, Non-linear Numerical Methods and Rational Approxim &tion (ed.: A. Cuyt, D. Reidel Publ. Comp., Dordrecht 1988) 259–270.

    Chapter  Google Scholar 

  16. O. Njåstad, A modified Schur algorithm and an extended Hamburger moment problem, Trans. Amer. Math. Soc. 327 (1991) 283–311.

    MathSciNet  MATH  Google Scholar 

  17. O. Njåstad and W.J. Thron, The theory of sequences of orthogonal L-polynomials, in Padé Approximants and Continued Fractions (H. Waadeland and H. Wallin, eds.), Det Kongelige Norske Videnskabers Selskab, Skrifter, 1983), 54–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bultheel, A., Gonzalez-Vera, P., Hendriksen, E., Njåstad, O. (1994). Orthogonality and Boundary Interpolation. In: Cuyt, A. (eds) Nonlinear Numerical Methods and Rational Approximation II. Mathematics and Its Applications, vol 296. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0970-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0970-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4420-2

  • Online ISBN: 978-94-011-0970-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics