Skip to main content

Dry pressing of ceramic powders

  • Chapter
Ceramic Processing

Abstract

Dry compaction is one of the most popular shape forming processes, since it involves a relatively simple technology while allowing high production rates. However, our understanding of this process is still empirical. Most industrial problems in this area are solved (if at all) by trial-and error; this is the reason for the many papers now published each year about compaction. The aim of this chapter is to review these papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinn, D.B., Bedford, R.E. and Kennard, F.L. (1984) Dry-bag isostatic pressing and contour grinding of technical ceramics, in Advances in Ceramics, Vol. 9, Forming of Ceramics (eds J.A. Mangels and G.L. Messing), The American Ceramic Society, Columbus, pp. 4–15.

    Google Scholar 

  2. Mac Entire, B.J. (1984) Tooling design for wet-bag isostatic pressing, in Advances in Ceramics, Vol. 9, Forming of Ceramics (eds J.A. Mangels and G.L. Messing), The American Ceramics Society, Columbus, pp. 16–31.

    Google Scholar 

  3. Kuhn, L., Mac Meeking, R.M. and Lange, F.F. (1989) in Powders and Grains, Proceedings of the 1st International Conference on Micromechanics of Granular Materials, Clermont-Ferrand, France, 4–8 September (eds J. Biarez and E. Gourves), Balkema, Rotterdam, pp. 331–338.

    Google Scholar 

  4. Bortzmeyer, D. (1990) Compaction of ceramic powders. PhD Thesis, Ecole des Mines de Paris.

    Google Scholar 

  5. Matsumoto, R.L.K. (1986) Generation of powder compaction response diagrams, J. Am. Ceram. Soc., 69(10), C246–C247.

    Article  CAS  Google Scholar 

  6. Lukasiewicz, S.J. and Reed, J.S. (1978) Character and compaction response of spray dried agglomerates, Am. Ceram. Soc. Bull., 57(9), 798–801.

    CAS  Google Scholar 

  7. Groot Zevert, W.F.M, Winnubst, A.J.A., Theunissen, G.S.A.M. and Burggraaf, A.J. (1990) Powder preparation and compaction behaviour of fine-grained Y-TZP, J. Mater. Sci., 25, 3449–3455.

    Article  CAS  Google Scholar 

  8. Harvey, J.W. and Johnson, D.W. Binder (1980) Systems in ferrite, Am. Ceram. Soc. Bull., 59(6), 637–645.

    CAS  Google Scholar 

  9. Brewer, J.A., Moore, R.H., Reed, J.S. (1981) Effect of relative humidity on the compaction of barium titanate and manganese zinc ferrite agglomerates containing polyvinyl alcohol, Am. Ceram. Soc. Bull., 60(2), 212.

    CAS  Google Scholar 

  10. Frey, R.G. and Halloran, J.W. (1984) Compaction behaviour of spray dried alumina, J. Am. Ceram. Soc., 67(3), 199–203.

    Article  Google Scholar 

  11. Di Milia R.A. and Reed, J.S. (1983) Dependence of compaction of the glass transition temperature of the binder phase, Am. Ceram. Soc. Bull., 62(4), 484–488.

    Google Scholar 

  12. Nies, C.W. and Messing, G.L. (1984) Binder hardness and plasticity in granule compaction, in Advances in Ceramics, Vol 9, Forming of Ceramics, (eds J.A. Mangels and G.L. Messing), The American Ceramic Society, pp. 58-66.

    Google Scholar 

  13. Caligaris, R.E., Topolewsky, R., Maggi, P. and Brog, F. (1985) Compaction behavior of ceramic powders, Powder Technol., 42, 263–267.

    Article  CAS  Google Scholar 

  14. Kanatani, K.I. (1981) The use of entropy in the description of granular materials, Powder Technol., 30, 217–223.

    Article  Google Scholar 

  15. Kawakita, K. and Lüdde, K.H. (1970) Some considerations on powder compression equations, Powder Technol., 4, 61–68.

    Article  Google Scholar 

  16. Gonthier, Y. (1984) Contribution à l’étude du comportement mécanique des poudres pharmaceutiques sous pression, Thesis, University of Grenoble.

    Google Scholar 

  17. Chaklader, A.C.D. and Bhattacharya, S.K. (1987) Effect of additives on the cold compaction behaviour of SiC powders, in Sintering 85, (eds G.C. Kuczynski, D.P. Uskokovic, H. Palmour and M.M. Ristic) Plenum Press, pp. 359-370.

    Google Scholar 

  18. Carless, J.E. and Leigh, S (1974) Compression characteristics of powders: radial die wall pressure transmission and density changes, J. Pharm. Pharma., 26, 289–297.

    Article  CAS  Google Scholar 

  19. Zheng, J. and Reed, J.S. (1988) Particle and granule parameters affecting compaction efficiency in dry pressing, J. Am. Ceram. Soc., 71(11), C456–C458.

    Article  CAS  Google Scholar 

  20. Leiser, D.B., Whittemore, O.J. (1970) Compaction behavior of ceramic particles, Am. Ceram. Soc. Bull., 49(8), 714–717.

    Google Scholar 

  21. Yamaguchi, T. and Kosha, H (1981) Sintering of acicular Fe2O3 powders, J. Am. Ceram. Soc., 64(5) C84–C85.

    Article  CAS  Google Scholar 

  22. Ciftcioglu, M., Akinc, M. and Burkhart, L. (1987) Effect of agglomerate strength on sintered density of yttria powders containing agglomerates of monosized spheres, J. Am. Ceram. Soc., 70(11), C329–C334.

    Article  CAS  Google Scholar 

  23. Carless, J.E. and Sheak, A. (1976) Changes in the particle size distribution during tableting of sulphathiazole powder, J. Pharm. Pharmac., 28, 17–22.

    Article  CAS  Google Scholar 

  24. Butler, P.B., Haworth, M.E., Elban, W.L. and Coyne, P.J. (1990) Particle morphology characterization of quasi-statistically compacted sucrose, Powder Technol., 62, 171–181.

    Article  CAS  Google Scholar 

  25. Masters, K. (1979) Spray Drying Handbook, 4th edn, Longman Scientific and Technical (J. Wiley copublisher), New York.

    Google Scholar 

  26. Lukasiewicz, S.J. (1989) Spray drying ceramic powders, J. Am. Ceram. Soc., 72(4), 617–624.

    Article  CAS  Google Scholar 

  27. Liang, B. and King, C.J. (1991) Factors influencing flow patterns, temperature fields and consequent drying rates in spray drying, Drying Technol., 9(1), 1–25.

    Article  Google Scholar 

  28. Bast, R. (1990) Organic additives for dry pressing, Interceram., 39(6), 13–14.

    CAS  Google Scholar 

  29. Kuno, H. and Okada, J. (1982) The compaction process and deformability of granules, Powder Technol., 33, 73–79.

    Article  CAS  Google Scholar 

  30. Oberacker, R., Ottenstein, A. and Thümmler, F. (1988) Characterisation of granules by measurement of load-deformation curves with a newly developed strength tester, in Proceedings of the 2nd International Conference on Ceramic Powder Processing Science, 12–14 October, Berchtesgaden, Germany, pp. 37-47.

    Google Scholar 

  31. van der Zwan J. (1989) Granule strength and compaction behaviour of agglomerated materials in Euro-Ceramics, Vol. 1, Processing of Ceramics (eds G. de With, R.A. Terpstra and R. Metselaar), Elsevier, London, pp. 1238–1242.

    Google Scholar 

  32. DiMilia R.A. and Reed J.S. (1983) Stress transmission during the compaction of a spray-dried alumina powder in a steel die, J. Am. Ceram. Soc., 66(9), 667–672.

    Article  Google Scholar 

  33. Uetsamu, K., Kim, J.-Y., Miyashita, M., Uchida, N. and Saito, K (1990) Direct observation of internal structure in spray-dried alumina, J. Am. Ceram. Soc., 73(8), 2555–2557.

    Article  Google Scholar 

  34. Youshaw, R.A., Halloran, J.W. (1982) Compaction of spray dried powders, Am. Ceram. Soc. Bull., 61(2), 227–230.

    CAS  Google Scholar 

  35. Messing, G.L., Markhoff, C.S. and Mac Coy, L.G. (1982) Characterization of ceramic powder compaction, Am. Ceram. Soc. Bull., 61(8), 857–860.

    CAS  Google Scholar 

  36. Naito, N. (1979) Pore size distribution during compaction and early stage sintering of Si3N4, MS Thesis, Lawrence Berkeley Laboratory University of California.

    Google Scholar 

  37. Matsuo, Y., Nishimura, T., Jinbo, K., Yasuda, K. and Kimura, S. (1987) Development of cyclic-CIP and its application to powder forming, Yogyo-Kyokai-Shi 95(12), 1226–1231.

    Article  CAS  Google Scholar 

  38. Nishimura, T., Jinbo, K., Matsuo, Y. and Kimura, S. (1990) Forming of ceramic powders by cyclic-CIP. Effect of bias pressure, J. Ceram. Soc. Jap. Intn. Edn, 98, 742–745.

    Google Scholar 

  39. Emeruwa, E., Jarrige, J. and Mexmain, J. (1989) Ferrite powder compaction with ultrasonic assistance, in Euro Ceramics, Vol. 1, Processing of Ceramics (eds G. de With, R.A. Terpstra and R. Metselaar), Elsevier, London, pp. 1248–1252.

    Google Scholar 

  40. Strijbos, S., Rankin, P.J., Klein Wassink, R.J., Bannink, J. and Oudemans, G.J. (1977) Stresses occurring during one sided die compaction of powders, Powder Technol. 18, 187–200.

    Article  Google Scholar 

  41. Henke, M., Klemm, U. and Sobek, D. (1986) Determination of specific parameters in dry pressing of ceramic powders, J. Powder Bulk. Solids Technol., 10(1), 9–14.

    CAS  Google Scholar 

  42. Strijbos, S. and Knaapen, A.C. (1977) Mechanical properties of a ferrite powder and its granulate; Sci. Ceram., 9, 477–485.

    CAS  Google Scholar 

  43. Kendall, K. (1986) Inadequacy of Coulomb’s friction law for particle assemblies, Letters to Nature, 319, 203–205.

    Article  Google Scholar 

  44. Claussen, N. and Jahn, J. (1970) Green strength of metal and ceramic compacts as determined by the indirect tensile test, Powder Metall. Int. 2(3) 87–90.

    Google Scholar 

  45. Marion, R.K. and Johnstone, J.K. (1977) Parametric study of the diametral compression test for ceramics Am. Ceram. Soc. Bull., 56(11), 958–1002.

    Google Scholar 

  46. Mehrabadi, M.M. and Nemat-Nasser, S. (1982) On statistical description of stress and fabric in granular materials, Int. J. Num. Anal. Meth. Geomechanics, 6, 95–108.

    Article  Google Scholar 

  47. Schubert, H. (1975) Tensile strength of agglomerates, Powder Technol., 11, 107–119.

    Article  Google Scholar 

  48. Kendall, K., Mac Alford, N. and Birchall, J.D. (1986) The strength of green bodies, Special Ceramics 8, 255–265.

    Google Scholar 

  49. Adams, M.J., Williams, D. and Williams, J.G. (1989) The use of linear elastic fracture mechanics for particulate solids, J. Mater. Sci., 24, 1716–1772.

    Article  Google Scholar 

  50. Bortzmeyer, D. (1992) Tensile strength of ceramic powders. J. Mater. Sci., 27, 3305–3308.

    Article  CAS  Google Scholar 

  51. Thompson, R.A. (1981) Mechanics of powder pressing. I. Model for powder densification, Am. Ceram. Soc. Bull., 60(2), 237–243.

    Google Scholar 

  52. Thompson, R.A. (1981) Mechanics of powder pressing. II. Finite element analysis of end-capping in pressed green powders, Am. Ceram. Soc. Bull., 60(2), 244–247.

    Google Scholar 

  53. Thompson, R.A. (1981) Mechanics of powder pressing. III. Model for the green strength of pressed powders, Am. Ceram. Soc. Bull., 60(2), 248–251.

    Google Scholar 

  54. Broese van Groenou, A. (1978) Pressing of ceramic powders: a review of recent work, Powder Met. Int., 10(4), 206–211.

    CAS  Google Scholar 

  55. Broese van Groenou, A. and Knaapen (1980) Density variations in die compacted powders, in Science of Ceramics, Proceedings of the 10th International Conference on Science of Ceramics, Berchtesgaden, 1979, Vol. 10 (ed H. Hausner), Deutsche Keramische Gesellschaft pp.100-105.

    Google Scholar 

  56. Ellington, W.A., Ackerman, J.L., Garrido, L., Weyand, J.D. and Di Milia, R.A. (1987) Characterization of porosity in green state and partially densified A12O3 by nuclear magnetic resonance imaging, Ceram. Eng. Sci. Proc., 8(7–8), 503–512.

    Article  Google Scholar 

  57. Mac Leod, H.M. and Marshall, K. (1977) The determination of density distribution in ceramic compacts using autoradiography, Powder Technol., 16, 107–122.

    Article  Google Scholar 

  58. Oda, M. and Sudoo, T. (1989) Fabric tensor showing anisotropy of granular soils and its application to soil plasticity, in, Powders and Grains, Proceedings of the 1st International Conference on Micromechanics of Granular Media, Clermont-Ferrand, France, 4–9 September 1989 (eds J. Biarez and R. Gourvès), Balkema, Rotterdam., pp. 155–162.

    Google Scholar 

  59. Shima, S. and Mimura, K. (1986) Densification behavior of ceramic powders, Int. J Mech. Sci., 28(1), 53–59.

    Article  Google Scholar 

  60. Abouaf, M. (1985) Modélisation de la compaction de poudres métalliques frittées. Doctoral Thesis, University of Grenoble.

    Google Scholar 

  61. Hehenberger, M., Samuelson, P., Alm, O., Nilsson, L. and Olofsson, T. (1982) Experimental and theoretical study of powder compaction, in Proc. IUTAM Conf. on Deformation and Failure of Granular Material, Delft, 31 August-3 September, pp. 381-390.

    Google Scholar 

  62. Strijbos, S. and Vermeer P.A. (1978) Stress and density distributions in the compaction of powders, in Processing of Crystalline Ceramics (eds H. Palmour, R.F. Davis and T. M. Hare), Mater Sci. Res., 11, 113–123.

    Google Scholar 

  63. Bathurst, R.J. and Rothenburg L. (1988) Micromechanical aspects of isotropic granular assemblies with linear contact interactions, J. Appl. Mech., 55, 17–23.

    Article  Google Scholar 

  64. Jenkins, J.T., Cundall, P.A. and Ishibashi, I. (1989) in Powders and Grains, Proceedings of the 1st International Conference on Micromechanics of Granular Materials, Clermont-Ferrand, France, 4–8 September 1989 (eds J. Biarez and R. Gourvés), Balkema Rotterdam, pp. 257–264.

    Google Scholar 

  65. Kolymbas, D. and Wu, W. (1990) Recent results of triaxial tests with granular materials. Powder Technol., 60, 99–119.

    Article  CAS  Google Scholar 

  66. Vermeer, P.A. (1977) A double hardening model for sand, Delft Progress Report Civil Engineering, 2, 303–320.

    Google Scholar 

  67. Gudehus, G. (1977) Finite Elements in Geomechanics, (ed. G. Gudehus) John Wiley and Sons, NY.

    Google Scholar 

  68. Broese van Groenou, A. (1982) Theory of dust pressing, Interceram 31(6), 1–10.

    Google Scholar 

  69. Bortzmeyer, D. (1992) Modelling ceramic powder compaction. Powder Technol., 70(2), 131–139.

    Article  CAS  Google Scholar 

  70. Morimoto, Y., Hayashi T. and Takei, T. (1982) Mechanical behavior of powders during compaction in a mould with variable cross sections, Int. J. Powder Metall. Powder Technol., 18(2), 129–145.

    Google Scholar 

  71. Fang, T.-T. and Hsieh H.-L. (1988) Effects of pressing methods on the sintering behavior of high purity BaTiO3, J. Mater. Sci. Lett., 7, 187–188.

    Article  CAS  Google Scholar 

  72. Oda, M (1977) Coordination number and its relation to shear strength of granular material, Soils Found., 17(2), 29–42.

    Article  Google Scholar 

  73. Fischmeister, H.F., Arzt, E. and Olsson, L.R. (1978) Particule deformation and sliding during compaction of spherical powders: a study by quantitative metallography, Powder Metall., 21(4), 179–185.

    CAS  Google Scholar 

  74. Lee, H.H.D. (1990) Validity of using mercury porosimetry to characterize and pore structure of ceramic green compacts, J. Am. Ceram. Soc., 73(8), 2309–2315.

    Article  Google Scholar 

  75. Stanley-Wood, N.G., Abdelkarim, A., Johansson, M.E., Sadeghnejad, G. and Osborne, N. (1990) The variation in, and correlation of, the energetic potential and surface areas of powders with degree of uniaxial compaction stress, Powder Technol., 60, 15–26.

    Article  CAS  Google Scholar 

  76. Karunanithy, S. and Mooibroek, S. (1989) Detection of physical flaws in alumina reinforced with SiC fibres by imaging in the green state, J. Mater. Sci., 24, 3686–3690.

    Article  CAS  Google Scholar 

  77. Kupperman, D.S. and Karplus, H.B. (1984) Ultrasonic wave propagation characteristics of green ceramics, Ceram. Bull., 63(12), 1505–1509.

    CAS  Google Scholar 

  78. Hsieh, H.-L. and Fang, T.-T. (1989) Effects of powder processing on the green compacts of high-purity BaTiO3, J. Am. Ceram. Soc., 72(1), 142–145.

    Article  CAS  Google Scholar 

  79. Hsieh, H.-L. and Fang, T.-T. (1990) Effect of green states on sintering behavior and microstructural evolution of high-purity barium titanate, J. Am. Ceram. Soc., 73(6), 1566–1573.

    Article  CAS  Google Scholar 

  80. Dynys, F.W. and Halloran, J.W. (1983) Compaction of aggregated alumina powders, J. Am. Ceram. Soc., 66(9), 655–659.

    Article  CAS  Google Scholar 

  81. Stanley-Wood, N.G., Sarrafi, M. and Lagarde, S. (1988) Characterisation of uniaxially compacted titanium dioxide in the stress range 125-20 000 kPa by water adsorption, in Proceedings of the 13th Annual Powder and Bulk Solids Conference 9-2 May 1988, Rosemont, Illinois, pp. 471-482.

    Google Scholar 

  82. Oda, M. (1978) Significance of fabric in granular material, in Proceedings of a US-Japan Seminar on Continuum Mechanics and Statistical Approaches in the Mechanics of Granular Materials Sendai, Japan, 5–9 June 1978 (eds S.C. Cowin and M. Satake), Gakujutsu Bunken Fukyu-Kai, Tokyo, Japan, pp. 7–26.

    Google Scholar 

  83. Umeya, K., Hara, R. and Kikuta, J. (1975) On two dimensional shear test by model powders, J. Chem. Eng. Japan, 8(1), 56–62.

    Article  Google Scholar 

  84. Yu, A.B. and Standish, N. (1988) An analytical-parametric theory of the random packing of particles, Powder Technol., 55, 171–186.

    Article  CAS  Google Scholar 

  85. Stovall, T., De Larrard, F. and Buil, M. (1986) Linear packing density model of grain mixtures, Powder Technol., 48, 1–12.

    Article  CAS  Google Scholar 

  86. Oger, L., Troadec, J.P., Bideau, D., Dodds, J.A. and Powell, M.J. (1986) Properties of disordered sphere packings. I. Geometric structure: statistical model, numerical simulation and experimental results, Powder Technol., 46, 121–131.

    Article  CAS  Google Scholar 

  87. Ouchiyama, N. and Tanaka, T. (1986) Porosity estimation from particle size distribution, Ind. Eng. Chem. Fundam., 25, 125–129.

    Article  CAS  Google Scholar 

  88. Thomas, G., Missiaen, J.M. and Rouille, L. (1989) in, Powders and Grains, Proceedings of the 1st International Conference on Micromechanics of Granular Media, Clermont-Ferrand, France, 4–8 September 1989 (eds J. Biarez and E. Gourves), Balkema, Rotterdam, pp. 99–104.

    Google Scholar 

  89. Soppe, W. (1990) Computer simulation of random packing of hard spheres, Powder Technol., 62, 189–196.

    Article  CAS  Google Scholar 

  90. Rodriguez, J., Allibert, C.H. and Chaix, J.M. (1986) A computer method for random packing of spheres of unequal size, Powder Technol., 47, 25–33.

    Article  CAS  Google Scholar 

  91. Oda, M. and Konishi, J. (1974) Microscopic deformation mechanism of granular material in simple shear, Soils and Foundations, 14(4), 25–38.

    Article  Google Scholar 

  92. Konishi, J. (1978) Microscopic model studies on the mechanical behaviour of granular materials, in US-japan Seminar on Continuum Mechanics and Statistical Approaches in the Mechanics of Granular Materials, Sendai, Japan, 5–9 June 1978 (eds S.C. Cowin and M. Satake), Proceedings of a Gakujutsu Bunken Fukyu-Kai, Tokyo, Japan, pp. 27–45.

    Google Scholar 

  93. Cundall, P.A., Jenkins, J.T. and Ishibashi, I. (1989) in Powders and Grains, Proceedings of the 1st International Conference on Micromechanics of Granular-Materials. Clermont-Ferrand France, 4–8 September 1989 (eds J. Biarez and E. Gourves), Balkema Rotterdam, pp. 319–322.

    Google Scholar 

  94. Niesz, D.E. and Bennett, R.B. (1972) Strength characterization of powder aggregates, Am. Ceram. Soc. Bull., 51(9), 677–680.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bortzmeyer, D. (1995). Dry pressing of ceramic powders. In: Terpstra, R.A., Pex, P.P.A.C., de Vries, A.H. (eds) Ceramic Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0531-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0531-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4236-9

  • Online ISBN: 978-94-011-0531-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics