Skip to main content

Molecular Approaches to the Study of the Mechanism of Action of Auxins

  • Chapter
Plant Hormones

Abstract

Phytohormones play a crucial role in normal plant growth, but despite their fundamental influence on almost all aspects of plant development, very little is known on their mode of action at the molecular level. Here we describe three different approaches to addressing this question: the analysis of proteins which bind auxin with high specificity and as such might act as auxin receptors; the study of the effect of expression of bacterial genes whose products modify the intracellular levels of auxins and cytokinins, and the generation of gene tagged plant mutants altered in their response to auxins. While diverse in their approach, these strategies have been devised to dissect the auxin signal transduction pathway at the molecular level. The results that we will describe, while sharing a common thread, indicate that the plant cell has evolved a remarkable array of molecular pathways in response to plant growth substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Gishlain, M., Guem, J. (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc. Natl. Acad. Sci. USA 86, 231–237.

    Article  Google Scholar 

  2. Barbier-Brygoo, H., Ephritikhine, G., Klämbt, D., Maurel, C., Palme, K., Schell, J., Guem, J. (1991) Perception of the auxin signal at the plasma membrane of tobacco mesophyll protoplasts. Plant J. 1, 83–93.

    Article  CAS  Google Scholar 

  3. Benning, C. (1986) Evidence supporting a model of voltage-dependent uptake of auxin into Cucurbita vesicles. Planta 169, 228–237.

    Article  CAS  PubMed  Google Scholar 

  4. Blonstein, A.D., Stirnberg, P., King, P. (1991) Mutants of N. plumbaginifolia with specific resistance to auxin. Mol. Gen. Genet. 228, 361–371.

    CAS  Google Scholar 

  5. Brzobohaty, B., Moore, I., Kristoffersen, P., Bako, L., Campos, N., Schell, J., Palme, J. (1993) Release of active cytokinin by a ß-glucosidase localized to the maize root meristem. Science, in press.

    Google Scholar 

  6. Campos, N., Feldwisch, J., Zettl, R, Boland, W., Schell, J., Palme, K. (1991) Identification of auxin-binding proteins using an improved assay for photoaffinity labeling with 5-N3-(7-3H)-indole-3-acetic acid. Technique 3, 69–75.

    CAS  Google Scholar 

  7. Campos, N., Bako, L., Feldwisch, J., Schell, J., Palme, J. (1992) A protein from maize labeled with azido-IAA has novel ß-glucosidase activity. Plant J. 2, 675–684.

    Article  CAS  Google Scholar 

  8. Campos, N., Schell, J., Palme, K. (1993) In vitro uptake and processing of maize auxin-binding proteins by ER-derived microsomes. Plant Cell Physiol. 34, in press.

    Google Scholar 

  9. Cohen, J.D., Bandurski, R.S. (1982) Chemistry and physiology of the bound auxins. Ann. Rev. Plant Physiol. 34, 163–197.

    Google Scholar 

  10. Cross, J.W. (1985) Auxin action: The search for the receptor. Plant Cell Environ. 8, 351–359.

    Article  CAS  Google Scholar 

  11. Estelle, M., Somerville, C. (1987) Auxin resistant mutants of Arabidopsis thaliana with altered morphology. Mol. Gen. Genet. 206, 200–206.

    CAS  Google Scholar 

  12. Estruch, J.J., Chriqui, D., Grossmann, K., Schell, J., Spena, A. (1991) The plant oncogene roiC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 10, 2889–2895.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Estruch, J.J., Parets-Soler, T., Schmtilling, T., Spena, A. (1991) Cystolic localisation in transgenic plants of the ro1C peptide from Agrobacterium rhizogenes. Plant Mol. Biol. 17, 547–550.

    CAS  Google Scholar 

  14. Estruch, J.J., Prinsen, E., Van Onckelen, H., Schell, J., Spena, A. (1991) Viviparous leaves produced by somatic activation of an inactive cytokinin-synthesizing gene. Science 254, 1364–1367.

    Article  CAS  PubMed  Google Scholar 

  15. Estruch, J.J., Schell, J., Spena, A. (1991) The protein encoded by the ro1B plant oncogene hydrolyses indole glucosides. EMBO J. 10, 3125–3128.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Feldwisch, J., Zettl, R., Hesse, F., Schell, J., Palme, K. (1992) An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kDa polypeptide. Proc. Natl. Acad. Sci. USA 89, 475–479.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Felle, H., Peters, W., Palme, K. (1991) The electrical response of maize to auxins. Biochim. Biophys. Acta 1064, 199–204.

    CAS  Google Scholar 

  18. Gibson, S.I., Somerville, C. (1992) Chromosome walking in Arabidopsis thaliana using yeast artificial chromosomes. In: Methods in Arabidopsis Research, pp 119–143, Koncz, C., Chua, N.-H., Schell, J., eds. World Scientific, Singapore.

    Chapter  Google Scholar 

  19. Goldsmith, M.H.M. (1982) A saturable site responsible for polar transport of indole-3acetic acid in sections of maize coleoptiles. Planta 155, 68–75.

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi, H., Czaja, I., Schell, J., Walden, R. (1992) Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258, 1350.

    Article  CAS  PubMed  Google Scholar 

  21. Hertel, R. (1987) Auxin transport: Binding of auxins and phytotropins to the carriers. Accumulation into and efflux from membrane vesicles. In: Plant Hormone Receptors. NATO ASI Series, Vol. H10, pp 81–92. Klämbt, D., ed. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  22. Hertel, R., Lomax, T.L., Briggs, W.R. (1983) Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157, 193–201.

    Article  CAS  PubMed  Google Scholar 

  23. Hesse, T., Feldwisch, J., Balshiisemann, D., Bauw, G., Puype, M., Vandekerckhove, J., Löbler, M., Klämbt, D., Schell, J., Palme, K. (1989) Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin. EMBO J. 8, 2453–2461.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hicks, G.R., Rayle, D.L., Jones, A.M., Lomax, T.L. (1989) Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin. Proc. Natl. Acad. Sci. USA 86, 4948–4952.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hicks, G.R., Rayle, D.L., Lomax, T. (1989) The Diageotropica mutant of tomato lacks high specific activity auxin binding sites. Science 245, 52–54.

    Article  CAS  PubMed  Google Scholar 

  26. Inohara, N., Shimomura, S., Fukui, T., Futai, M. (1989) Auxin-binding protein located in the endoplasmic reticulum of maize shoots: Molecular cloning and complete primary structure. Proc. Natl. Acad. Sci. USA 86, 3564–3568.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Inzé, D., Follin, A., Van Lijsebettens, M., Simoens, C., Genetello, C., Van Montagu, M., Schell, J. (1984) Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol. Gen. Genet. 194, 265–274.

    Google Scholar 

  28. Jacobs, M., Gilbert, S.F. (1983) Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220, 1297–1300.

    Article  CAS  PubMed  Google Scholar 

  29. Jones, A.M. (1990) Do we have the auxin receptor yet? Physiol. Plant. 80, 154–158.

    CAS  Google Scholar 

  30. Jones, A.M., Melhado, L.L., Ho, T.-H., Leonhard, N.J. (1984) Azido auxins. Quantitative binding data in maize. Plant Physiol. 74, 295–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Jones, A.M., Venis, M.A. (1989) Photoaffinity labeling of indole-3-acetic acid-binding proteins in maize. Proc. Natl. Acad. Sci. USA 86, 6153–6156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jones, A.M., Herman, E.M. (1993) KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiol. 101, 595–606.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Klee, H., Horsch, R.B., Hinchee, M., Hein, M.B., Hoffmann, N.L. (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev. 1, 86–89.

    Article  CAS  Google Scholar 

  34. Körber, H., Strizhov, N., Staiger, D., Feldwisch, J., Olsson, O., Sandberg, G., Palme, K., Schell, J., Koncz, C. (1991) T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants. EMBO J. 10, 3983–3991.

    Google Scholar 

  35. Levesque, H., Delepelaire, P., Rouzé, P., Slightom, J., Tepfer, D. (1988) Common evolutionary origin of the central portions of the Ri TL-DNA of Agrobacterium rhizogenes and the Ti T-DNA of Agrobacterium tumefaciens. Plant Mol. Biol. 11, 781–744.

    Google Scholar 

  36. Libbenga, K.R., Mennes, A.M. (1987) In: Plant Hormones and their Role in Plant Growth and Development, pp 194–221. Davies, P.J., ed. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  37. Lincoln, C., Britton, J.H., Estelle, M. (1990) Growth and development of the axrl mutants of Arabidopsis. Plant Cell 2, 1071–1080.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Maher, E.P., Martindale, S.J.B. (1980) Mutants of Arabidopsis with altered responses to auxin and gravity. Biochem. Genet. 18, 1041–1053.

    CAS  Google Scholar 

  39. Martin-Tanguy, J., Tepfer, D., Paynot, M., Burtin, D., Heisler, L., Martin, C. (1990) Inverse relationship between polyamine levels and the degree of phenotypic alteration induced by the root inducing left-hand transferred DNA from Agrobacterium rhizogenes. Plant Physiol. 92, 912–918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Maurel, C., Barbier-Brygoo, H., Brevet, J., Spena, A., Tempé, J., Guern, J. (1991) Agrobacterium rhizogenes T-DNA genes and sensitivity of plant protoplasts to auxins. In: Advances in Molecular Genetics of Plant-Microbe Interactions, pp 343–351. Hennecke, H., Verma, D.P.S., eds. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  41. Michael, T., Spena, A. (1993) The plant oncogenes rolA, B and C from Agrobacterium rhizogenes; effects on morphology, development and hormone metabolism. In:Agrobacterium Protocols, Methods in Molecular Biology Series, Gartland, K., Davey, M., eds. Humana Press, New Jersey (in press).

    Google Scholar 

  42. Nagata, T., Takebe, I. (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92, 301–308.

    Article  CAS  PubMed  Google Scholar 

  43. Napier, R.M., Venis, M. (1991) From auxin-binding protein to plant hormone receptor? Trends Biochem. Sci. 16, 72–75.

    Google Scholar 

  44. Narayanan, K.R., Mudge, K.W., Poovaiah, B.W. (1981) Demonstration of auxin binding to strawberry fruit membranes. Plant Physiol. 68, 1289–1293.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Nilsson, O., Crozier, A., Schmülling, T., Sandberg, G., Olsson, O. (1993) Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes ro1B gene. Plant J. 3, 681–689.

    Article  CAS  Google Scholar 

  46. Nilsson, O., Moritz, T., Imbault, N., Sandberg, G., Olsson, O. (1993) Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes IL-DNA. Plant Physiol. 102, 363–371.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Oono, Y., Handa, T., Kanaya, K., Uchimiya, H. (1987) The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn. J. Genet. 62, 501–505.

    Google Scholar 

  48. Palme, K., Feldwisch, J., Hesse, T., Bauw, G., Puype, M., Vandekerckhove, J., Schell, J. (1990) Auxin binding proteins from maize coleoptiles: Purification and molecular characterization. In: Hormone Perception and Signal Transduction in Animals and Plants, pp 299–313. Roberts, J., Kirk, C., Venis, M., eds. Society for Experimental, Biology.

    Google Scholar 

  49. Palme, K., Hesse, T., Moore, I., Campos, N., Feldwisch, J., Garbers, C., Hesse, F., Schell, J. (1991) Hormonal modulation of plant growth: The role of auxin perception. Mech. Dev. 33, 97–106.

    Article  CAS  PubMed  Google Scholar 

  50. Palme, K., Hesse, T., Campos, N., Garbers, C., Yanofsky, M.F., Schell, J. (1992) Molecular analysis of an auxin binding protein gene located on chromosome 4 of Arabidopsis. Plant Cell 4, 193–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Pickett, F.B., Wilson, A.K., Estelle, M. (1990) The auxl mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol. 94, 1462–1466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Poovaiah, B.W. (1982) Strawberry fruit as a model system to study target tissue specificity and the physiological relevance of auxin-binding. Plant Physiol. 69, Suppl., 151.

    Google Scholar 

  53. Romano, C.P., Hein, M.B., Klee, H.J. (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene ofPseudomonassavastonoi. Genes and Devel. 5, 438–446.

    Article  CAS  Google Scholar 

  54. Rubery, P.H. (1990) In: Hormone Perception and Signal Transduction in Animals and Plants, pp 119–146. Roberts, J., Kirk, C., Venis, M., eds. Company of Biologists Limited, Cambridge.

    Google Scholar 

  55. Rack, A., Palme, K., Venis, M.A., Napier, R.M., Felle, H.H. (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J. 4, 41–46.

    Article  Google Scholar 

  56. Schliemann, W. (1991) Zum Konzept der reversiblen Konjugation bei Phytohormonen. Naturwissenschaften 78, 392–401.

    Article  CAS  Google Scholar 

  57. Schmülling, T., Schell, J., Spena, A. (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7, 2621–2629.

    PubMed Central  PubMed  Google Scholar 

  58. Schwob, E., Choi, S.-Y., Simmons, C., Migliaccio, F., Ilag, L., Hesse, T., Palme, K., Ö11, D. (1993) Molecular analysis of three maize 22 kDa auxin binding protein genes - transient promoter expression and regulatory regions. Plant J. 4, 423–432.

    Article  CAS  PubMed  Google Scholar 

  59. Sitbon, F., Östin, A., Sundberg, B., Olsson, O., Sandberg, G. (1993) Conjugation of indole-3-acetic acid (IAA) in wild-type and IAA-overproducing transgenictobacco plants, and identification of the main conjugates by fit-fast atom bombardment liquid chromatography-mass spectrometry. Plant Physiol. 101, 313–320.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Souza de, L., King, P.J. (1991) Mutants of Nicotiana plumbaginifolia with increased sensitivity to auxin. Mol. Gen. Genet. 231, 65–75.

    Google Scholar 

  61. Spena, A., Estruch, J.J., Schell, J. (1992) On microbes and plants: new insights in phytohormonal research. Current Opinion Biotech. 3, 159–163.

    Article  CAS  Google Scholar 

  62. Spena, A., Prinsen, E., Fladung, M., Schulze, S.C., Van Onckelen, H. (1991) The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants. Mol. Gen. Genet. 227, 205–212.

    CAS  Google Scholar 

  63. Spena, A., Schmülling, T., Koncz, C., Schell, J. (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J. 6, 3891–3899.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Sun, L.-Y., Monneuse, M.-O., Martin-Tanguy, J., Tepfer, D. (1991) Changes in flowering and the accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Science 80, 145–156.

    Article  CAS  Google Scholar 

  65. Tagliani, L., Nissen, S., Blake, T.K. (1986) Comparison of growth, exogenous auxin sensitivity and endogenous indole-3-acetic acid content in roots of Hordeum vulgare L. and an agravitropic mutant. Biochem. Genet. 24, 839–848.

    CAS  Google Scholar 

  66. Trewavas, A. (1980) An auxin induces the appearance of auxin-binding activity in artichoke tubers. Phytochemistry 1, 1303–1308.

    Article  Google Scholar 

  67. Venis, M., ed. (1985) Hormone binding sites in plants. Longmann, New York.

    Google Scholar 

  68. Venis, M.A., Napier, R.M., Barbier-Brygoo, H., Maurel, C., Perrot-Rechenmann, C., Guern, J. (1992) Antibodies to a peptide from the maize auxin-binding protein have auxin agonist activity. Proc. Natl. Acad. Sci. USA 89, 7208–7212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Vreugdenhil, D., Burgers, A., Harkes, P.A.A., Libbenga, K.R. (1981) Modulation of the number of membrane-bound auxin-binding sites during the growth of batch-cultured tobacco cells. Planta 152, 415–419.

    Article  CAS  PubMed  Google Scholar 

  70. Walden, R., Hayashi, H., Schell, J. (1991) T-DNA as a gene tag. Plant J. 1, 281–288.

    Article  Google Scholar 

  71. Walden, R., Czaja, I., Schmülling, T., Schell, J. (1993) Rol genes alter hormonal requirements for protoplast growth and modify the expression of an auxin responsive promoter. Plant Cell Rep. 12, 551–554.

    Google Scholar 

  72. Walton, D.J., Ray, P.M. (1981) Evidence for receptor functions of auxin-binding sites in maize; red light inhibition of mesocotyl elongation and auxin binding. Plant Physiol. 68, 1334–1338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wilson, A., Pickett, F.B., Turner, J., Estelle, M. (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol. Gen. Genet. 222, 377–383.

    CAS  Google Scholar 

  74. Zambryski, P. (1992) Chronicles from the Agrobacterium-plant cell transfer story. Ann. Rev. Plant Physiol. Plant. Mol. Biol. 43, 465–490.

    Article  CAS  Google Scholar 

  75. Zettl, R., Campos, N., Feldwisch, J., Schell, J., Boland, W., Palme, K. (1991) Synthesis and application of 5’-azido-[3,6–412]naphthylphthalamic acid, a photo-activatable probe for auxin efflux carrier proteins. Technique 3, 151–158.

    Google Scholar 

  76. Zettl, R., Feldwisch, J., Boland, W., Schell, J., Palme, K. (1992) 5’-Azido-[3,6-3H2]-1 naphthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: Identification of a 23-kDa protein from maize coleoptile plasma membranes. Proc. Natl. Acad. Sci. USA 89, 480–484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Zobel, R.W. (1973) Some physiological characteristics of the ethylene-requiring tomato mutant diageotropica. Plant Physiol. 52, 385–389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Yu, L.-W., Laza Rus, C.M. (1991) Structure and sequence of an auxin-binding protein gene from maize (Zea mays L.). Plant Mol. Biol. 16, 925–930.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schell, J., Palme, K., Walden, R. (1995). Molecular Approaches to the Study of the Mechanism of Action of Auxins. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0473-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0473-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2985-5

  • Online ISBN: 978-94-011-0473-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics