Skip to main content

Mathematical Modelling of Solitary Oceanographic Vortices

  • Chapter
  • 2153 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 30))

Abstract

One of the most striking things one sees when examining satellite images of the ocean is the abundance of swirls, eddies and other vortex motions. Whether one is examining the rapid destabilization of coastal currents or seemingly lethargic mid-ocean flows, one does not observe the flow of a slow viscous fluid but rather the continuous turbulent interaction of multiple eddies (Figure 13.1.1). It is not too much of an exaggeration to suggest that the large scale transient behaviour in the ocean should be analyzed in terms of eddy dynamics. The principal purpose of this chapter is to provide an introduction to some of the mathematical models that are being used to study various aspects of ocean eddy dynamics. This contribution is not meant to be exhaustive. Readers will find other aspects emphasized in, for example, Flierl (1987). Rather, our survey topics, while attempting to briefly describe some of the central features of the modern theory, do however reflect the author’s personal biases. For example, we will tend to focus exclusively on steadily-travelling, isolated or coherent eddies (in the sense that the area-integrated energy and enstrophy is finite) and ignore steady or topographically-forced ocean eddies. Thus, we will not describe ocean eddies that can be essentially described as a Taylor column (Hide 1961; Swaters and Mysak 1985). We will also not describe the process of eddy formation even though this is a physical process of real interest and complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aburdzhaniya, G.D., Ivanov, V.N., Kamenetz, F.F. and Pukhov, A.V. 1987 Dynamics of drift vortices in collision plasmas. Physica Scripta 35, 677–681.

    Article  ADS  Google Scholar 

  • Amick, L.J. and Praenkel, L.E. 1986 The uniqueness of Hill’s spherical vortex. Arch. Rat. Mech. Anal. 92, 91–119.

    Article  MATH  Google Scholar 

  • Andrews, D.G. 1984 On the existence of nonzonal flows satisfying sufficient conditions for stability. Geophys. Astrophys. Fluid Dynamics. 28, 243–256.

    Article  ADS  Google Scholar 

  • Arnol’d, V. I. 1965 Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Sov. Math. 6, 773–777.

    MATH  Google Scholar 

  • Arnol’d, V. I. 1969 On an a priori estimate in the theory of hydrodynamical stability. Am. Math. Soc. Transl., Ser. 2. 79, 267–269.

    MATH  Google Scholar 

  • Benjamin, T. B. 1972 The stability of solitary waves. Proc. R. Soc. Lond. A328, 153–183.

    MathSciNet  ADS  Google Scholar 

  • Benjamin, T. B. 1984 Impulse, flow force and variational principles. IMA. J. Appl. Math. 32, 3–68.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Butchart, N., Haines, K. and Marshall, J.C. 1987 A theoretical and diagonistic study of solitary waves and atmospheric blocking. J. Atmos. Sci. 46, 2063–2078.

    Article  MathSciNet  ADS  Google Scholar 

  • Carnevale, G.F., Vallis, G.K., Purini, R. and Briscolini, M. 1988 The role of initial conditions in flow stability with an application to modons. Phys. Fluids 31, 2567–2572.

    Article  MathSciNet  ADS  Google Scholar 

  • Carnevale, G.F. and Shepherd, T.G. 1990 On the interpretation of Andrews’ theorem. Geophys. Astrophys. Fluid Dynamics. 51, 1–17.

    Article  MathSciNet  ADS  Google Scholar 

  • Flierl, G.R., Larichev, V.D., McWilliams, J.C. and Reznik, G.M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5,1–41.

    Article  ADS  Google Scholar 

  • Flierl, G.R., Stern, M.E. and Whitehead, J.A. Jr. 1983 The physical significance of modons, Laboratory experiments and general integral constraints. Dyn. Atmos. Oceans. 7, 233–263.

    Article  ADS  Google Scholar 

  • Flierl, G.R. 1987 Isolated eddy models in geophysics. Ann. Rev. Fluid Mech. 19, 493–530.

    Article  ADS  Google Scholar 

  • Gidas, B., Ni, W.M. and Nirenberg, L. 1979 Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Grimshaw, R.H.J. 1979 Slowly-varying solitary waves. I. Korteweg-de Vries equation. Proc. R. Soc. Lond. A368, 359–375.

    MathSciNet  ADS  Google Scholar 

  • Haines, K. 1989 Baroclinic modons as prototypes for atmospheric blocking. J. Atmos. Sci. 46, 3202–3218.

    Article  MathSciNet  ADS  Google Scholar 

  • Haines, K. and Marshall, J.C. 1987 Eddy-forced coherent structures as a prototype of atmospheric blocking. Q.J.R. Meteorol. Soc. 113, 681–704.

    Article  ADS  Google Scholar 

  • Hide, R. 1961 Origin of Jupiter’s Great Red Spot. Nature. 190, 895–896.

    Article  ADS  Google Scholar 

  • Holm, D. D., Marsden, J.E., Ratiu, T. and Weinstein, A. 1985 Nonlinear stability of fluid and plasma equilibria. Phys. Reps. 123, 1–116.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kaup, D. J. and Newell, A.C. 1978 Solitons as particles, oscillators, and in slowly changing media, a singular perturbation theory. Proc. R. Soc. Lond. A361, 413–446.

    ADS  Google Scholar 

  • Kloeden, P.E. 1987 On the uniqueness of solitary Rossby waves. J. Austral. Math. Soc. Ser. B28, 476–485.

    Article  MathSciNet  Google Scholar 

  • Kodama, Y. and Ablowitz, M.J. 1981 Perturbations of solitons and solitary waves. Stud. Appl. Math. 64, 225–245.

    MathSciNet  ADS  MATH  Google Scholar 

  • Laedke, E.W. and Spatschek, K.H. 1986 Two-dimensional drift-vortices and their stability. Phys. Fluids 29, 133–142.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Larichev, V. and Reznik, G. 1976 Two-dimensional Rossby soliton, an exact solution. Rep. U.S.S.R. Acad. Sci. 231, 1077–1079.

    Google Scholar 

  • LeBlond, P.H. and Mysak, L.A. 1978 Waves in the Ocean., Elsevier, New York.

    Google Scholar 

  • Makino, M., Kamimura, T. and Taniuti, T. 1981 Dynamics of two-dimensional solitary vortices in a low-beta plasma with convective motion. J. Phys. Soc. Japan. 50, 980–989.

    Article  MathSciNet  ADS  Google Scholar 

  • McWilliams, J.C. 1980 An application of equivalent modons to atmospheric blocking. Dyn. Atmos. Oceans. 5, 43–66.

    Article  ADS  Google Scholar 

  • McWilliams, J.C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 21–43.

    Article  ADS  MATH  Google Scholar 

  • McWilliams, J.C., Flierl, G.R., Larichev, V.D. and Reznik, G.M. 1981 Numerical studies of barotropic modons. Dyn. Atmos. Oceans. 5, 219–238.

    Article  ADS  Google Scholar 

  • Mory, M. 1983 Theory and experiment of isolated baroclinic vortices. Tech. Rep. WHOI-83-41, pp. 114–132. Woods Hole Oceanographic Institute.

    Google Scholar 

  • Mory, M. 1985 Integral constraints on bottom and surface isolated eddies. J. Phys. Oceanogr. 15, 1433–1438.

    Article  ADS  Google Scholar 

  • Mory, M., Stern, M.E. and Griffiths, R.W. 198, Coherent baroclinic eddies on a sloping bottom. J. Fluid Mech. 183, 45–62.

    Google Scholar 

  • Nof, D. 1983 The translation of deep cold eddies on a sloping bottom. Deep-Sea Res. 30, 171–182.

    Article  Google Scholar 

  • Nof, D. 1984 Oscillatory drift of deep cold eddies. Deep-Sea Res. 31, 1395–1414.

    Article  Google Scholar 

  • Nycander, J. 1992 Refutation of stability proofs for dipole vortices. Phys. Fluids A4, 467–476.

    MathSciNet  ADS  Google Scholar 

  • Olver, P.J. 1982 A nonlinear Hamiltonian structure for the Euler equations. J. Appl. Math. Anal. 89, 233–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer-Verlag.

    Book  MATH  Google Scholar 

  • Petviashvili, V.I. 1983 Cyclones and anti-cyclones in zonal flow. In Nonlinear and Turbulent Processes in Physics, Vol. 2, Nonlinear Effects in Various Areas of Science, 979–987, R.Z. Sagdev (ed.).

    Google Scholar 

  • Pierini, S. 1985 On the stability of equivalent modons. Dyn. Atmos. Oceans. 9, 273–280.

    Article  ADS  Google Scholar 

  • Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. Roy. Soc. A92, 408–424.

    ADS  Google Scholar 

  • Rhines, P.B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443.

    Article  ADS  MATH  Google Scholar 

  • Ripa, P. 1992 Comments on a paper by Sakuma and Ghil. Phys. Fluids A4, 460–463.

    MathSciNet  ADS  Google Scholar 

  • Sakuma, H. and Ghil, M. 1990 Stability of stationary barotropic modons by Lyapunov’s direct method. J. Fluid Mech. 211, 393–416.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sakuma, H. and Ghil, M. 1991 Stability of propagating modons for small-amplitude perturbations. Phys. Fluids A3, 408–414.

    MathSciNet  ADS  Google Scholar 

  • Shepherd, T.G. 1990, Symmetries, conservation laws, and Hamiltonian structure in gophysical fluid dynamics. Adv. Geophys. 32, 287–338.

    Article  ADS  Google Scholar 

  • Stern, M.E. 1975 Minimal properties of planetary eddies. J. Mar. Res. 33, 1–13.

    ADS  Google Scholar 

  • Swaters, G.E. 1985 Ekman layer dissipation in an eastward-travelling modon, J. Phys. Oceanogr. 15, 1212–1216.

    Article  ADS  Google Scholar 

  • Swaters, G.E. 1986a Stability conditions and a priori estimates for equivalent-barotropic modons. Phys. Fluids 29, 1419–1422.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Swaters, G.E. 1986b Barotropic modon propagation over slowly-varying topography. Geophys. Astrophys. Fluid Dynamics 36, 85–113.

    Article  ADS  MATH  Google Scholar 

  • Swaters, G.E. 1989 A perturbation theory for the solitary-drift vortex solutions of the Hasegawa-Mima equation. J. Plasma Physics 41, 523–539.

    Article  ADS  Google Scholar 

  • Swaters, G.E. 1991a On the baroclinic instability of cold-core coupled density fronts on a sloping continental shelf. J. Fluid Mech. 224, 361–382.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Swaters, G.E. 1991b Dynamical characteristics of decaying Lamb couples. J. Appl. Math. Phys. 42, 109–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Swaters, G.E. 1993 Nonlinear stability of intermediate baroclinic flow on a sloping bottom. Proc. R. Soc. Lond. A442, 249–272.

    MathSciNet  ADS  Google Scholar 

  • Swaters, G.E., and Flierl, G.R. 1989 Ekman dissipation of a barotropic modon. In Mesoscale/Synoptic coherent structures in geophysical turbulence 149–165, J.C.J. Nihoul and B.M. Jamart, (eds.), Elsevier Publishers.

    Chapter  Google Scholar 

  • Swaters, G.E., and Flierl, G.R. 1991 Dynamics of ventilated coherent cold eddies on a sloping bottom. J. Fluid Mech. 223, 565–587.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Swaters, G.E., and Mysak, L.A. 1985 Topographically-induced baroclinic eddies near a coastline, with application to the Northeast Pacific. J. Phys. Oceanogr. 15, 1470–1485.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Swaters, G.E. (1995). Mathematical Modelling of Solitary Oceanographic Vortices. In: Green, S.I. (eds) Fluid Vortices. Fluid Mechanics and Its Applications, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0249-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0249-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4111-9

  • Online ISBN: 978-94-011-0249-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics