Skip to main content

Band and Time Limiting, Recursion Relations and Some Nonlinear Evolution Equations

  • Chapter
Special Functions: Group Theoretical Aspects and Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 18))

Abstract

Let Af the Finite Fourier Transform of a function f(x) ∈ L2 (R), given by

$$\left( {Af} \right)\left(\lambda \right) = \int_{ - T}^T {{e^{i\lambda x}}} f\left( x \right)dx,\lambda \in \left[{ - \Omega ,\Omega } \right]$$

One can consider A as the result of first chopping f to the interval [-T,T], then taking its Fourier transform and then chopping again, this time to the interval [-Ω, Ω]. This explains the title of this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.A. Grünbaum. A study of Fourier space methods for “limited angle” image reconstruction. Numerical Functional Analysis and Optimization 2(1), 31–42.

    Google Scholar 

  2. F.A. Grünbaum. ‘Toeplitz matrices commuting with a tridiagonal matrix’, Linear Algebra and its Applications40, (1981) 25–36.

    Google Scholar 

  3. F.A. Grünbaum. ‘A remark on Hilbert’s matrix’. Linear Algebra and its Applications, 43, (1982), 119–124.

    Google Scholar 

  4. F.A. Grünbaum. ‘The eigenvectors of the discrete Fourier transform: a version of the Hermite functions’, J. Math Anal. Applic. 88, (1982), 355–363.

    Google Scholar 

  5. E.T. Whittaker. 1915, Proc. London Math. Soc. (2) 14, 260–268.

    MATH  Google Scholar 

  6. E.L. Ince. 1922, On the connection between linear diff. systems and integral equations. Proc. of the Royal Society of Edinburg (42), pp. 43–53.

    Google Scholar 

  7. M.L. Mehta. Random matrices, Academic press, N.Y., 19. 67.

    Google Scholar 

  8. F.A. Grünbaum. The limited angle problem in tomography and some related mathematical problems. Internat. Colloq. Luminy ( France ), May 1982, North Holland.

    Google Scholar 

  9. F.A. Grünbaum. To appear, ‘A new property of reproducing kernels for classical orthogonal polynomials’, J. Math. Anal. Applic. 95, (1983).

    Google Scholar 

  10. J. Duistermaat and F.A. Grünbaum. In preparation, Differential equations in the eigenvalue parameter.

    Google Scholar 

  11. V. Bargmann. On the connection between phase shifts and scattering potential. Rev. Mod. Phys. 21, 1949, 489–493.

    Google Scholar 

  12. H. Airault, H. McKean, and J. Moser. 1977, Rational and elliptic solutions of the Korteweg-deVries equation and a related many body problem. Communications in Pure and Applied Math. (30), 95–148.

    Google Scholar 

  13. D. Chudnovski and G. Chudnovski. 1977, Pole expansions for nonlinear partial differental equations. Nuovo Cimento, 40B, 339–353.

    Article  Google Scholar 

  14. M. Adler and J. Moser. 1978. On a class of polynomials connected with the Korteweg-deVries equation. Communications in Mathematical physics (61), 1–30.

    Google Scholar 

  15. M. Ablowitz and H. Airault. 1981. Perturbations finies et forme particulière de certaines solutions de l’equation de Korteweg-deVries. C.R. Acad. Sci. Paris, t. 292, 279–281.

    MathSciNet  MATH  Google Scholar 

  16. P. Lax. 1968. Integrals of nonlinear equations of evolutions and solitary waves. Communication on Pure and Aoolies Mathematics 21,; 467–490.

    Google Scholar 

  17. I. Gelfand and Dikii. 1976. Fractional powers of operators and Hamiltonian systems. Funkts. Anal. Prilozhen, 10, 4, 13–39.

    MathSciNet  Google Scholar 

  18. F.A. Grünbaum. Recursion relations and a class of isospectral manifolds for Schroedinger’s equation, to appear in Nonlinear Waves, E. Debnath, Editor.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Grünbaum, F.A. (1984). Band and Time Limiting, Recursion Relations and Some Nonlinear Evolution Equations. In: Askey, R.A., Koornwinder, T.H., Schempp, W. (eds) Special Functions: Group Theoretical Aspects and Applications. Mathematics and Its Applications, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9787-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9787-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0319-6

  • Online ISBN: 978-94-010-9787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics