Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 15))

Abstract

Since the Schrödinger equation cannot be solved exactly for polyelectronic systems, one has to look for approximate solutions of any desired accuracy. One way is the use of the variation method [1]. The Eckart theorem shows that any trial wavefunction ξ (which is normalizable) leads to a value of the energy ε which is never lower than the true ground state energy E of the system

$$H\psi = E\psi$$
((1))
$$\varepsilon=\frac{{<\xi\left|{}\right|\xi>}}{{<\xi\left|{\xi>}\right.}}$$
((2))
$$\varepsilon\geqslant E$$
((3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) R. McWeeny and B.T. Sutcliffe, “Methods of Molecular Quantum Mechanics”, Academic Press, 1969;

    Google Scholar 

  2. b) F.L. Pilar, “Elementary Quantum Chemistry”, McGraw Hill, New-York, 1968.

    Google Scholar 

  3. C.C.J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).

    Article  MATH  Google Scholar 

  4. C.C.J. Roothaan, Rev. Mod. Phys., 32, 179 (1960).

    Google Scholar 

  5. J.A. Pople and R.K. Nesbet, J. Chem. Phys., 22, 571 (1954).

    Article  Google Scholar 

  6. G. Berthier, J. Chim. Phys., 51, 363 (1954).

    Google Scholar 

  7. G. Das and A.C. Wahl, J. Chem. Phys., 44, 87 (1966).

    Article  Google Scholar 

  8. A. Veillard and E. Clementi, Theoret. Chim. Acta, 7, 133 (1967).

    Article  Google Scholar 

  9. D.R. Hartree, Proc. Cambridge Phil. Soc., 24, 89 and 111(1928).

    Article  Google Scholar 

  10. V. Fock, Z. Physik, 61, 126 (1930).

    Article  Google Scholar 

  11. D.B. Neumann, H. Basch, R.L. Kornegay, L.C. Snyder, J.W. Moskowitz, C. Hornback and S.P. Leibmann, “The Polyatom (version 2) System of Programs”, QCPE 1995 Indiana University, Bloomington, Indiana 47401, USA.

    Google Scholar 

  12. G.H.F. Diercksen and W.P. Kraemer, “MUNICH, Molecular Program System”, Reference Manual, Special Technical Report, Max-Plank Institut fur Physik und Astrophysik, Munich, Germany.

    Google Scholar 

  13. A. Dedieu, J. Demuynck, A. Strich and A. Veillard, “Asterix: a system of programs for the Univac 1108”, unpublished work.

    Google Scholar 

  14. U. Almlof, USIP Technical Report n°7209, Stockholm, Suede (1972).

    Google Scholar 

  15. A.J. Duke, Chem. Phys. Let., 13, 76 (1972).

    Google Scholar 

  16. A. Strich and A. Veillard, unpublished work.

    Google Scholar 

  17. F.P. Billingsley, Int. J. Quant. Chem., 6, 617 (1972).

    Google Scholar 

  18. R.C. Raffenetti, Chem. Phys. Let., 20, 335 (1973).

    Google Scholar 

  19. M. Yoshimine, IBM Technical Report RJ-555, San Jose, USA (1969).

    Google Scholar 

  20. P.O. Lowdin, J. Chem. Phys., 18, 365 (1950).

    Article  Google Scholar 

  21. C.C.J. Roothaan and P.S. Bagus, in “Methods in Computational Physics”, B. Alder, S. Fernbach and M. Rotenberg ed., Vol.2, Academic Press, New-York, 19633 p. 47.

    Google Scholar 

  22. See for instance: H. Margenau and G.M. Murphy, “The Mathematics of Physics and Chemistry”, Van Nostrand, Princeton, 1967, Vol. 2, p. 71.

    Google Scholar 

  23. R. Hofmann, J. Chem. Phys., 39, 1397 (1963).

    Google Scholar 

  24. J.A. Pople and D.L. Beveridge, “Approximate Molecular Orbital Theory”, Mc GrawHill, New-York, (1970).

    Google Scholar 

  25. L.L. Shipman and R.E. Christoffersen, Chem. Phys. Let., 15, 1469 (1972).

    Google Scholar 

  26. N.M. Winter and T.H. Dunning, Chem. Phys. Let, 8, 1 69 (1971).

    Google Scholar 

  27. W.B. Neilsen, Chem. Phys. Let., 18, 225 (1973).

    Google Scholar 

  28. A. Strich and B. Roos, unpublished work.

    Google Scholar 

  29. A. Dedieu, private communication.

    Google Scholar 

  30. P.S. Bagus, I.P. Batra and E. Clementi, Chem. Phys. Let., 23, 305 (1973).

    Google Scholar 

  31. S. Ehrenson, Theoret. Chim. Acta, 14, 136 (1969).

    Google Scholar 

  32. V.R. Saunders and I.H. Hillier, Int. J. Quant. Chem., 7, 699, (1973).

    Article  Google Scholar 

  33. J. Demuynck, private communication.

    Google Scholar 

  34. K.C. Tang and C. Edmiston, J. Chem. Phys., 52, 997 (1970).

    Google Scholar 

  35. N.M. Winter, W.C. Ermler and R.M. Pitzer, Chem. Phys. Let., 19, 179 (1973).

    Google Scholar 

  36. R.M. Pitzer, J. Chem. Phys., 58, 3111 (1973).

    Google Scholar 

  37. R.M. Pitzer, J. Chem. Phys., 59, 3308 (1973).

    Google Scholar 

  38. P.D. Dacre, Chem. Phys. Let., 7, 47 (1970).

    Google Scholar 

  39. M. Elder, Int. J. Quant. Chem., 7, 75 (1973).

    Google Scholar 

  40. S. Huzinaga, Phys. Rev., 120, 866 (1960).

    Google Scholar 

  41. S. Huzinaga, Phys. Rev., 122, 131 (1961).

    Google Scholar 

  42. T.E.H. Walker, Chem. Phys. Let., 9, 174 (1971).

    Google Scholar 

  43. W.R. Wessel, J. Chem. Phys., 47, 3253 (1967).

    Article  Google Scholar 

  44. R. McWeeny, Proc. Roy. Soc.(London), A235, 496 (1956).

    Google Scholar 

  45. R. Fletcher, Mol. Phys., 19, 55 (1970).

    Google Scholar 

  46. R. Kari and B.T. Sutcliffe, Chem. Phys. Let.,7, 1 1970 ).

    Google Scholar 

  47. R. Kari and B.T. Sutcliffe, Int. J. Quant. Chem., 7, 459 (1973).

    Google Scholar 

  48. G. Berthier, in “Molecular Orbitals in Chemistry, Physics and Biology”, P.O. Lowdin and B. Pullman ed., Academic Press, New-York, 1964, p. 57 and following.

    Google Scholar 

  49. R.K. Nesbet, Proc. Roy. Soc. (London), A230, 312 (1955).

    Google Scholar 

  50. W.J. Hunt, T.H. Dunning and W.A. Goddard, Chem. Phys. Let., 3, 606 (1969).

    Article  MathSciNet  Google Scholar 

  51. D. Peters, J. Chem. Phys., 57, 4351 (1972).

    Article  Google Scholar 

  52. R. Albat and N. Gruen, Chem. Phys. Let., 18, 572 (1973).

    Article  Google Scholar 

  53. J.P. Dahl, in Proceedings of the SRC Atlas Symposium n°4 “Quantum Chemistry. The State of the Art”, V.R. Saunders and J. Brown ed., Atlas Computer Laboratory, Chilton, England, April 1974.

    Google Scholar 

  54. M.F. Guest and V.R. Saunders, Mol. Phys., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Veillard, A. (1975). The Logic of SCF Procedures. In: Diercksen, G.H.F., Sutcliffe, B.T., Veillard, A. (eds) Computational Techniques in Quantum Chemistry and Molecular Physics. NATO Advanced Study Institutes Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1815-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1815-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1817-3

  • Online ISBN: 978-94-010-1815-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics