Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 2))

Abstract

A conversion process, from diamagnetic to paramagnetic defects in natural silica samples, has been pointed out by combining measurements of optical and electron paramagnetic resonance spectroscopy. The conversion is induced by y irradiation and its rate has been found to depend on the OH content of a given silica type. The mechanism can be explained by a structural model in which the native optically active defect is a twofold coordinated Ge center and the β induced one is the so called H(II) center. The latter defect has been found to be unstable, as thermal treatments of the irradiated samples, at relatively low temperatures (T ≤ 430 K), restore completely the native concentration of diamagnetic defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griscom, D.L. (1991) J. of the Ceramic Society of Japan 99, 899–916.

    Google Scholar 

  2. Neustruev, V.B. (1994) J. Physics Condensed Matter 6, 6901–3936.

    Article  CAS  Google Scholar 

  3. Skuja, L. (1998) J. of Non-Crystalline Solids 239, 16–48.

    Article  CAS  Google Scholar 

  4. Trukhin, A.N. and Fitting, H.J. (1999) J. of Non-Crystalline Solids 248, 49–64.

    Article  CAS  Google Scholar 

  5. Tohmon, R., Mizuno, H., Ohki, Y., Sasagane, K. Nagasawa, K. and Hama, Y. (1989) Physical Review B 39, 1337–1345.

    Article  CAS  Google Scholar 

  6. Kohketsu, M., Awazu, K., Kawazoe, H. and Yamane, M. (1989) Japanese J. Applied Physics 28, 615–621.

    Article  CAS  Google Scholar 

  7. Skuja, L.N., Streletsky and Pakovich, A.B. (1984) Solid State Communications 50, 1069–1072.

    Article  CAS  Google Scholar 

  8. Skuja, L.N., Trukhin, A.N. and Plaudis, AS. (1984) Physica Status Solidi 84, 153–157.

    Article  Google Scholar 

  9. Guzzi, M., Martini, M., Mattaini, M., Pio, F. and Spinolo, G. (1987) Physical Review B 35, 9407–9409.

    Article  CAS  Google Scholar 

  10. Imai, H., Arai, K., Imagawa, H., Hosono, H. and Abe, Y. (1988) Physical Review B 38, 12772–12775.

    Article  CAS  Google Scholar 

  11. Skuja, L., (1992) J. of Non-Crystalline Solids 149, 77–95.

    Article  CAS  Google Scholar 

  12. Kuzuu, N. and Murahara, M. (1993) Physical Review B 47, 3083–3088.

    Article  CAS  Google Scholar 

  13. Bagratashvili, N. V., Tsypina, S.L, Radtsig, V. A, Rybaltovskii, A.O., Chernov, P.V., Alimpiev, S.S. and Simanovskii, Y.O. (1995) J. of Non-Crystalline Solids 180, 221–229.

    Article  CAS  Google Scholar 

  14. Boscaino, R., Cannas, M., Gelardi, F.M. and Leone, M. (1996) Physical Review B 54, 6194–6199.

    Article  CAS  Google Scholar 

  15. Hosono, H., Abe, Y., Kinser, D.L., Weeks, R.A, Muta, K. and Kawazoe, H. (1992) Physical Review B 46, 11445–11451.

    Article  CAS  Google Scholar 

  16. Tsai, T.E., Friebele, E.J., Rajaram, M. and Mukhapadhyay, S. (1994) Applied Physics Letters 64, 148–1483.

    Google Scholar 

  17. Nishii, J., Fukumi, K., Yamanaka, H., Kawamura, K., Hosono, H. and Kawazoe, H. (1995) Physical Review B 52, 1661–1665.

    Article  CAS  Google Scholar 

  18. Awazu, K., Onuki, H. and Muta, K. (1997) J. of Non-Crystalline Solids 211, 158–163.

    Article  CAS  Google Scholar 

  19. Martini, M., Meinardi, R, Paleari, A., Portinari, L. and Spinolo, G. (1997) J. of Non-Crystalline Solids 216, 26–29.

    Article  CAS  Google Scholar 

  20. Meinardi, F. and Paleari, A. (1998) Physical Review B 58, 3511–3514.

    Article  CAS  Google Scholar 

  21. Griscom, D.L. (1979) Physical Review B 20, 1823–1834.

    Article  CAS  Google Scholar 

  22. Pfeffer, R.L. (1985) J. Applied Physics 57, 5176–5180.

    Article  CAS  Google Scholar 

  23. Griscom, D.L. (1985) J. of Non-Crystalline Solids 73, 51–77.

    Article  CAS  Google Scholar 

  24. Devine, R. A.B. (1992) Japanese J. Applied Physics 31, 4411–4421.

    Article  CAS  Google Scholar 

  25. Imai, H., Arai, K., Isoya, J., Hosono, H., Abe, Y. and Imagawa, H. (1993) Physical Review B 48, 3116–3123.

    Article  CAS  Google Scholar 

  26. Galeener, F.L., Kerwin, D.B., Miller, A.J. and Mikkelsen J.C.Jr (1993) Physical Review B 47, 7760–7779.

    Article  CAS  Google Scholar 

  27. Boscaino, R., Cannas, M., Gelardi, F.M. and Leone, M. (1996) Nuclear Instruments and Methods in Physics Research B 116, 373–377.

    Article  CAS  Google Scholar 

  28. Amossov, A.V. and Rybaltovsky, A.O. (1994) J. of Non-Crystalline Solids 179, 226–234.

    Article  CAS  Google Scholar 

  29. Hetherington, G, Jack, K.H. and Ramsay M.W. (1965) Physics and Chemistry of Glasses 6, 6–15.

    CAS  Google Scholar 

  30. Heraeus Quartzglas, Hanau, Germany, catalogue POL-0/102/E.

    Google Scholar 

  31. Quartz and Silice, Nemours, France, catalogue OPT-91-3.

    Google Scholar 

  32. TSL Group PLC, Wallsend, England, Optical Products Cataogue.

    Google Scholar 

  33. Leone, M., Agnello, S., Boscaino, R., Cannas, M. and Gelardi, F.M. (1999) Physical Review B 60, 11475–11481.

    Article  CAS  Google Scholar 

  34. Leone, M., Boscaino, R., Cannas, M. and Gelardi F.M. (1997) J. of Non-Crystalline Solids 216, 105–110.

    Article  CAS  Google Scholar 

  35. Jaffe, H.H. and Orchin, M. (1970) Theory and Applications of Ultraviolet Spectroscopy, John Wiley & Sons Inc., New York.

    Google Scholar 

  36. Cannas, M., Barbera, M., Boscaino, R., Collura, A, Gelardi, F.M. and Varisco, S. (1999) J. of Non-Crystalline Solids 245, 190–195.

    Article  CAS  Google Scholar 

  37. Agnello, S., Boscaino, R., Cannas, M. and Gelardi, F.M. (1998) J. of Non-Crystalline Solids 232-234, 323–328.

    Article  CAS  Google Scholar 

  38. Weeks, R.A. and Nelson, CM. (1960) J. of Applied Physics 31, 1555–1558.

    Article  CAS  Google Scholar 

  39. Vitko, J.Jr. (1978) J. of Applied Physics 49, 5530–5535.

    Article  CAS  Google Scholar 

  40. Radtsig, V. A. and Bobyshev, A. A. (1986) Physica Status Solidi B 133, 621–627.

    Article  CAS  Google Scholar 

  41. Agnello, S., Boscaino, R., Cannas, M., Gelardi, F.M. and Leone, M. (2000) Physical Review B 61, 1946–1951.

    Article  CAS  Google Scholar 

  42. Zhang, B.L. and Raghavachari, K. (1995) Physical Review B 51, 7946–7949.

    Article  CAS  Google Scholar 

  43. Zhang, B.L. and Raghavachari, K. (1997) Physical Review B 55, 15993–15996.

    Article  Google Scholar 

  44. Pacchioni, G. and Ferrario, R. (1998) Physical Review B 58, 6090–6096.

    Article  CAS  Google Scholar 

  45. Fujimaki, M., Watanabe, T., Katoh, T., Kasahara, T., Miyazaki, N., Ohki, Y. and Nishikawa, H. (1998) Physical Review B 57, 3920–3926.

    Article  CAS  Google Scholar 

  46. Essid, M., Brebner, J.L., Albert, J., and Awazu, K. (1998) Journal of Applied Physics 84, 4193–4197.

    Article  CAS  Google Scholar 

  47. Ohama, M., Fujiwara, T., and Ikushima, A.J. (1998) Applied Physics Letters 73 1481–1483.

    Article  CAS  Google Scholar 

  48. Fujimaki, M., Kasahara, T., Shimoto, S., Miyazaki, N., Tokuhiro, S., Seol, K.S. and Ohki, Y. (1999) Physical Review B 60, 4682–4686.

    Article  CAS  Google Scholar 

  49. Agnello, S., Boscaino, R., Cannas, M., Gelardi, F.M. and Leone, M. (2000) Nuclear Instruments and Methods in Physics Research B 166-167, 495–499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gelardi, F., Agnello, S. (2000). GAMMA RAYS INDUCED CONVERSION OF NATIVE DEFECTS IN NATURAL SILICA. In: Pacchioni, G., Skuja, L., Griscom, D.L. (eds) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0944-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0944-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6686-7

  • Online ISBN: 978-94-010-0944-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics