Skip to main content

Continuous-Wave Terahertz Generation Using Photomixers

  • Chapter
Terahertz Sources and Systems

Part of the book series: NATO Science Series ((NAII,volume 27))

Abstract

Optical heterodyne conversion, or photomixing, is a frequency agile technique that generates continuous-wave radiation at THz frequencies using thin films of low-temperature-grown GaAs. Optimizing photomixers for maximum output power requires careful design of the epitaxial growth sequence, and detailed analyses of the radio-frequency (RF) circuitry and of the optical feed. Control of the LTG-GaAs epitaxy leads to material with short photocarrier lifetime and robustness to thermal failure. Key tradeoffs are discussed for optimizing the RF and optical feeds for THz output power. Some promising applications for photomixers include local oscillators for THz heterodyne detectors based on superconductors, and high-resolution spectrometers useful for rotational spectroscopy of airborne molecules. Two experiments are described that demonstrate the viability of photomixers for these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.R. Brown, F. W. Smith, and K. A. Mclntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys., vol. 73, pp. 1480–1484, 1993.

    Article  Google Scholar 

  2. K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. Dinatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. vol. 67, pp. 3844–3846, 1995.

    Article  Google Scholar 

  3. S. Verghese, K. A. Mclntosh, and E. R. Brown, “Highly tunable fibercoupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech., vol. 45, pp. 1301–1309, 1997.

    Article  Google Scholar 

  4. S. Verghese, K. A. Mclntosh, S. D. Calawa, C.-Y. E. Tong, R. Kimberk, and R. Blundell, “A photomixer local oscillator for a 630-GHz heterodyne receiver,” IEEE Microwave and Guided Wave Lett., vol. 9, pp. 245–247, 1999.

    Article  Google Scholar 

  5. A. S. Pine, R. D. Suenram, E. R. Brown, and K. A. Mclntosh, “A terahertz photomixing spectrometer: Application to SO2 self broadening,” J. Mol. Spectrosc. vol. 175, pp. 37–47, 1996.

    Article  Google Scholar 

  6. P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. Mclntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency control of submillimeter-wave photomixing with distributed-Bragg-reflector diode lasers in low-temperaturegrown GaAs,” App. Phys. Lett. vol. 71, pp. 1601–1602, 1997.

    Article  Google Scholar 

  7. E. R. Brown, S. Verghese, and K. A. Mclntosh, “Terahertz photomixing in low-temperature-grown GaAs,” Proc. SPIE Conference on Advanced Technology MMW, Radio, and Terahertz Telescopes, vol. 3357, pp. 132–142, 1998.

    Article  Google Scholar 

  8. N. Erickson, “Diode frequency multipliers for THz local oscillator applications,” Proc. SPIE Conference on Advanced Technology MMW, Radio, and Terahertz Telescopes, vol. 3357, pp. 75–84, 1998.

    Article  Google Scholar 

  9. B. Xu, Q. Hu, and M. R. Melloch, “Electrically pumped tunable terahertz emitter based on intersubband transition,” Appl. Phys. Lett., vol. 71, pp. 440–442, 1997.

    Article  Google Scholar 

  10. M. Rochat, J. Faist, M. Beck, U. Oesterle, and M. Ilegems, “Farinfrared (λ = 88μm) electroluminescence in a quantum cascade structure,” Appl. Phys. Lett., vol. 73, pp. 3724–3726, 1997.

    Article  Google Scholar 

  11. N. Zamdmer, Q. Hu, K. A. Mclntosh, and S. Verghese, “Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias,” Appl. Phys. Lett., vol. 75, pp. 2313–2315, 1999.

    Article  Google Scholar 

  12. A. W. Jackson, Low-temperature-grown GaAs photomixers designed for increased terahertz output power, Ph.D. Dissertation, Dept. of Materials Science, Univ. of California, Santa Barbara, 1999.

    Google Scholar 

  13. S. M. Duffy, S. Verghese, K. A. Mclntosh, A. W. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech., to be published.

    Google Scholar 

  14. E. R. Brown, “A photoconductive model for superior GaAs THz photomixers,” Appl. Phys. Lett., vol. 75, pp. 769–771, 1999.

    Article  Google Scholar 

  15. S. Verghese, K. A. Mclntosh, and E. R. Brown, “Optical and terahertz power limits in low-temperature-grown GaAs photomixers,” Appl. Phys. Lett., vol. 71, pp. 2743–2745, 1997.

    Article  Google Scholar 

  16. K. A. Mclntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in lowtemperature-grown GaAs,” Appl. Phys. Lett., vol. 70, pp. 354–356, 1997.

    Article  Google Scholar 

  17. S. Verghese, N. Zamdmer, E. R. Brown, A. Förster, Q. Hu, “An optical correlator using a low-temperature-growri GaAs photocon-ductor,” Appl. Phys. Lett., vol. 69, pp. 842–844 (1996).

    Article  Google Scholar 

  18. N. Zamdmer, Q. Hu, K. A. Mclntosh, S. Verghese, and A. Förster, “On-chip frequency-domain submillimeter-wave transceiver,” Appl. Phys. Lett., vol. 75, pp. 3877–3879, 1999.

    Article  Google Scholar 

  19. M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antennas Propag., vol. 33, pp. 600–607, 1985.

    Article  Google Scholar 

  20. K. A. Mclntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. Dinatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett., vol. 69, pp. 3632–3534, 1996.

    Article  Google Scholar 

  21. S. Matsuura, G. A. Blake, R. A. Wyss, J. C. Pearson, C. Kadow, A. W. Jackson, and A. C. Gossard, “A traveling-wave THz photomixer based on angle-tuned phase matching,” Appl. Phys. Lett., vol. 74, pp. 2872–2874, 1999.

    Article  Google Scholar 

  22. E. K. Duerr, K. A. Mclntosh, and S. Verghese, “Distributed photomixers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest, (Optical Society of America, Washington DC), pp. 382–383, 2000.

    Google Scholar 

  23. S. Verghese, K. A. Mclntosh, S. D. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. vol. 73, pp. 3824–3826, 199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verghese, S., Mclntosh, K.A., Duffy, S.M., Duerr, E.K. (2001). Continuous-Wave Terahertz Generation Using Photomixers. In: Miles, R.E., Harrison, P., Lippens, D. (eds) Terahertz Sources and Systems. NATO Science Series, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0824-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0824-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7097-0

  • Online ISBN: 978-94-010-0824-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics