Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 563))

Abstract

We present a model to simulate the phenomenon of random lasers. It couples Maxwell’s equations with the rate equations of electronic population in a disordered system and includes the interaction of EM waves with electrons and the gain is saturable. Finite difference time domain methods are used to obtain the field pattern and the spectra of localized lasing modes inside the system. A critical pumping rate P c r exists for the appearance of the lasing peak(s) for periodic and random systems. The number of lasing modes increases with the pumping rate and the length of the random system. There is a lasing mode repulsion related to localization effects. This property leads to a saturation of the number of modes for a given size system and a relation between the localization length ξ and average mode length L m . The dynamic processes of the random laser systems are studied. We find some properties for evolving processes of the localized lasing modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. S. Letokhov, SOB Phys. JEPT 26, 835 (1968).

    ADS  Google Scholar 

  2. H. Cao, Y. G. Zhao, S. T. Ho, E.W. Seelig, Q. H. Wang, and R. P.H.Chang, Phys. Rev. Lett. 82, 2278 (1999); S. V. Frolov, Z. V. Vardeny, K. Yoshino, A. Zakhidov and R. H. Baughman, Phys. Rev. B 59, 5284 (1999).

    Article  ADS  Google Scholar 

  3. N. M. Lawandy, R. M. Balachandran, S. S. Gomers and E. Sauvain, Nature 368, 436 (1994).

    Article  ADS  Google Scholar 

  4. D. S. Wiersma, M. P. van Albada and Ad Lagendijk, Phys. Rev. Lett. 75, 1739 (1995); D. S. Wiersma et. al., Phys. Rev. E 54, 4256 (1996).

    Article  ADS  Google Scholar 

  5. A. Yu. Zyuzin, Phys. Rev. E 51, 5274 (1995).

    Article  ADS  Google Scholar 

  6. S. John and G. Pang, Phys. Rev. A 54, 3642 (1996), and references therein.

    Article  ADS  Google Scholar 

  7. Qiming Li, K. M. Ho and C. M. Soukoulis, to be published in Physica B.

    Google Scholar 

  8. K. Totsuka, G. van Soest, T. Ito, A. Lagendijk and M. Tomita, J. of Appl. Phys. 87, 7623 (2000).

    Article  ADS  Google Scholar 

  9. G. A. Berger, M. Kempe, and A. Z. Genack, Phys. Rev. E 56, 6118 (1997).

    Article  ADS  Google Scholar 

  10. P. Pradhan and N. Kumar, Phys. Rev. B 50, 9644 (1994).

    Article  ADS  Google Scholar 

  11. Z. Q. Zhang, Phys. Rev. B 52, 7960 (1995).

    Article  ADS  Google Scholar 

  12. J. C. J. Paasschens, T. Sh. Misirpashaev and C. W. J. Beenakker, Phys. Rev. B 54, 11887 (1996).

    Article  ADS  Google Scholar 

  13. Xunya Jiang and C. M. Soukoulis, Phys. Rev. B 59, 6159 (1999).

    Article  ADS  Google Scholar 

  14. Xunya Jiang, Qiming Li, and C. M. Soukoulis, Phys. Rev. B 59 R9007 (1999).

    Article  ADS  Google Scholar 

  15. A. Maitland and M. H. Dunn, Laser Physics (North-Holland Publishing Com., Amsterdam, 1969). See chapters 3, 8 and 9.

    Google Scholar 

  16. Anthony E. Siegman, Lasers (Mill Valley, California, 1986). See chapters 2, 3, 6 and 13.

    Google Scholar 

  17. Xunya Jiang and C. M. Soukoulis, Phys. Rev. Lett. 85, 70 (2000).

    Article  ADS  Google Scholar 

  18. A. Tafiove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, London, 1995). See chapters 3, 6, and 7.

    Google Scholar 

  19. Xunya Jiang, C. M. Soukoulis and H. Cao et al. to be published.

    Google Scholar 

  20. Such as the coumarine 102 or uranin with meth as solvent. Our results are of general validity and are not sensitive to the lasing dyes used.

    Google Scholar 

  21. The structure of our 1D random medium is an alternate of layers of random thickness representing the gain medium and dielectric layers of constant thickness representing the scatterers. Theoretically, every discrete grid point of the layers representing the gain medium is a source that can generate spontaneous emission. Because this is very time consuming, we selected a finite number (20 to 50) of sources. To simulate real spontaneous emission, every source needs a proper vibration amplitude and a Lorentzian frequency distribution. We have checked that the spatial distribution of the sources does not influence the calculation results.

    Google Scholar 

  22. H. Cao et. al. Phys. Rev. Lett. 84, 5584 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jiang, X., Soukoulis, C.M. (2001). Theory and Simulations of Random Lasers. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics