Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 563))

Abstract

Regular, hexagonally-ordered macropore arrays have been obtained by photo-electrochemical etching of prepatterned silicon substrates. For typical pore diameters of about 1 μm, aspect ratios of about 100 have been achieved. Due to the high aspect ratio, the negligible surface roughness and the high dielectric constant of silicon, these macropore arrays are suitable candidates for photonic crystal devices. In this review, we present transmission spectra and the corresponding calculations of the bulk photonic crystals with a lattice constant of 1.5 μm having a complete photonic bandgap between a vacuum wavelength of 3 and 4 μm. By omitting some pores during the etching, photonic defect structures can be obtained, e.g., waveguides, beamsplitters or micro-resonators. As an example, a straight waveguide will be discussed and good agreement between theoretical calculations and experimental transmission spectra is shown. A confinement in the third dimension along the pore axis can be reached by modulating the pore diameter. This is achieved by applying a modulated current density during anodization and carefully taking into account diffusion processes in the pores. First transmission measurements along these modulated pores and the corresponding modeling are shown. The 3D photonic crystals have now in all three direction non-linear dispersion relations which can be tuned rather independently. For optoelectronic application, first macropore arrays with a lattice constant of 0.5 μm have been prepared, exhibiting a photonic bandgap around the interesting telecommunication wavelength region of 1.3μm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Photonic Bandgaps and Localization, edited by C. M. Soukoulis, NATO ASI Series, Ser. B, Vol. 308, (Plenum Press, New York 1993).

    Google Scholar 

  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, (Princeton University Press, New Jersey 1995).

    MATH  Google Scholar 

  3. Photonic Band gap materials, edited by C. M. Soukoulis, NATO ASI Series, Ser. E, Vol 315, (Kluwer Academic Publishers, London 1996).

    Google Scholar 

  4. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  5. U. Grün ing, V. Lehmann, S. Ottow, and K. Busch, Appl. Phys. Lett. 68, 747 (1996).

    Article  ADS  Google Scholar 

  6. A. Birner, U. Griining, S. Ottow, A. Schneider, F. Mül ler, V. Lehmann, H. Föll, and U. Gösele, Phys. Stat. Sol. (a) 165, 111 (1998).

    Article  ADS  Google Scholar 

  7. V. Lehmann and U. Gröning, Thin Solid Films 297, 3 (1997).

    Article  Google Scholar 

  8. V. Lehmann and H. Föll, J. Electrochem. Soc. 137, 653 (1990).

    Article  Google Scholar 

  9. V. Lehmann, J. Electrochem. Soc. 140, 2836 (1993).

    Article  Google Scholar 

  10. S. Ottow, V. Lehmann, and H. Föll, J. Electrochem. Soc. 143, 385 (1996).

    Article  Google Scholar 

  11. K. Sakoda, Phys. Rev. B 51, 4672 (1995).

    Article  ADS  Google Scholar 

  12. A. Birner, A.-P. Li, F. Müller, U. Gösele, P. Kramper, V. Sandoghdar, J. Mlynek, K. Busch, V. Lehmann, to be published in Mater. Sci. Semicon. Proces. (2000).

    Google Scholar 

  13. S. W. Leonard, H. M. van Driel, K. Busch, S. John, A. Birner, A.-P. Li, F. Müller, U. Gösele, and V. Lehmann, Appl. Phys. Lett. 75, 3063 (1999).

    Article  ADS  Google Scholar 

  14. S. W. Leonard, H. M. van Driel, A. Birner, U. Gösele, P. R. Villeneuve, submitted to Opt. Lett.

    Google Scholar 

  15. F. Müller, A. Birner, U. Gösele, V. Lehmann, S. Ottow,a nd H. Föll, J. Porous Mater. 7, 201 (2000).

    Article  Google Scholar 

  16. F. Müller, A. Birner, J. Schilling, U. Gösele, Ch. Kettner and P. Hänggi, to be published in Phys. Stat. Sol. (a).

    Google Scholar 

  17. D. A. G. Bruggeman, Ann. Physik., Leipzig, 24, 636 (1935).

    Article  ADS  Google Scholar 

  18. F. Abelès, Ann. de Physique 5, 596 (1950).

    MATH  Google Scholar 

  19. S. Rowson, A. Chenokov, C. Cuisin, J.-M. Lourtioz, IEEE Proc.-Optoelectron. 145, 403 (1998).

    Google Scholar 

  20. S. W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele and V. Lehmann, Phys. Rev. B 61, R2389 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wehrspohn, R.B., Birner, A., Schilling, J., Mueller, F., Hillebrand, R., Goesele, U. (2001). Photonic Crystals from Macroporous Silicon. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics