Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 563))

  • 912 Accesses

Abstract

Some of the fundamentals of 2-D photonic crystals are discussed in view of the constraints and opportunities offered by the waveguide configuration. The possibilities, limitations and future applications in light emitting devices and in integrated optics are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.F. Krauss and R. M. De La Rue (1999) Photonic crystals at optical wavelengths — past, present and future, Progress in Quantum Electronics 23, 51–96.

    Article  ADS  Google Scholar 

  2. T.F. Krauss, R.M. De La Rue and S. Brand (1996) Two-dimensional photonic bandgap structures operating at near-infrared wavelengths, Nature 383, 699–702.

    Article  ADS  Google Scholar 

  3. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C.J.M. Smith, T.F. Krauss, R. M. De La Rue, R. Houdre, U. Oesterle, C. Jouanin and D. Cassagne(1999) Optical and confinement properties of two-dimensional photonic crystals, Journ. Lightwave Tech., 17, 2063–2077.

    Article  ADS  Google Scholar 

  4. T.F. Krauss, B.V. Voegele, C.R. Stanley and R.M. De La Rue (1997) Waveguide microcavity based on photonic microstructures, IEEE Photonics Technology Letters, 9, 176–178.

    Article  ADS  Google Scholar 

  5. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I., Smith and E.P. Ippen (1997) Photonic-bandgap microcavities in optical waveguides, Nature 390, 143–145.

    Article  ADS  Google Scholar 

  6. T. F. Krauss, O. Painter, A. Scherer, J.S. Roberts and R. M. De La Rue (1998) Photonic microstructures as laser mirrors, Optical Engineering 37, 1143–1148.

    Article  ADS  Google Scholar 

  7. M. Boroditsky, T. Krauss, R. Coccioli, R. Vrijen, R. Bhat and E. Yablonovitch (1999) Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals, Appl. Phys. Lett. 75 1036–1038.

    Article  ADS  Google Scholar 

  8. J.D. Joannopoulos, P.R. Villeneuve, S.H. Fan (1997) Photonic crystals: Putting a new twist on light, Nature 386, 143–149.

    Article  ADS  Google Scholar 

  9. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami (1999) Superprism phenomena in photonic crystals: Toward microscale lightwave circuits IEEE Journ. Lightwave Tech. 17,2032–2038.

    Article  ADS  Google Scholar 

  10. D. Labilloy, H. Benisty, C. Weisbuch, T.F. Krauss, R.M. De La Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne and C. Jouanin (1997) Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths, Phys. Rev. Lett. 79, 4147–4150.

    Article  ADS  Google Scholar 

  11. G.S. Petrich, P.R. Villeneuve, S. Fan, E.R. Thoen, J.D. Joannopoulos, E.P. Ippen and L. A. Kolodziejski (1999) One-dimensional Photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlOx semiconductor waveguides, Journ. Lightwave Tech., 2152–2160.

    Google Scholar 

  12. M. Tokushima, H. Kosaka, A. Tomita and H. Yamada (2000) Lightwave propagation through a 120 degrees sharply bent single-line-defect photonic crystal waveguide, Appl. Phys. Lett. 76, 952–954.

    Article  ADS  Google Scholar 

  13. D.M. Atkin, P. St J. Russell, T. A. Birks and P.J. Roberts (1996) Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure, J.Mod.Optics 43, 1035–1053.

    Article  ADS  Google Scholar 

  14. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus and I. Kim, “Two-dimensional photonic band-gap defect mode laser”, Science 284, pp. 1819–1821, 1999.

    Article  Google Scholar 

  15. C.J.M. Smith, H. Benisty, D. Labilly, U. Oesterle, R. Houdre, T.F. Krauss, R. M. De La Rue and C. Weisbuch (1999) Near-infrared microcavities confined by two-dimensional photonic bandgap crystals, Electronics Letters 35 228–229.

    Article  Google Scholar 

  16. H. Benisty, D. Labilloy, C. Weisbuch, C.J.M. Smith, T.F. Krauss, D. Cassagne, A. Beraud and C. Jouanin (2000) Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate, Appl. Phys. Lett. 76, 532–534.

    Article  ADS  Google Scholar 

  17. H. Benisty, P. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C.J.M. Smith, T. F. Krauss, C. Jouanin and D. Cassagne (2000) Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals, submitted to Optical and Quantum Electronics.

    Google Scholar 

  18. T.Krauss, Y.P.Song, S.Thoms, C.D.W. Wilkinson and R.M. DelaRue (1994) Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs, Electronics Letters 30, 1444–1446.

    Article  Google Scholar 

  19. V. Berger, O. Gauthier-Lafaye and E. Costard (1997) Photonic band gaps and holography, J. of Appl. Phys. 82, 60–64.

    Article  ADS  Google Scholar 

  20. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning and A.J. Turberfield (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53–56.

    Article  ADS  Google Scholar 

  21. J. O’B rien, O. Painter, R. Lee, C.C. Cheng, A. Yariv and A. Scherer (1996) Lasers incorporating 2D photonic bandgap mirrors, Electronics Letters 32, 2243–2244.

    Article  Google Scholar 

  22. C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida and C. Caneau (1994) Characterisation of chemically assisted ion beam etching of InP, J. Vac. Sci. Tech. B 12, 3317–3321.

    Article  Google Scholar 

  23. V.N. Astratov, I.S. Culshaw, R. Mark Stevenson, D. M. Whittaker, M.S. Skolnick, T. F. Krauss and R. M. De La Rue (1999) Resonant coupling of near-infrared radiation to photonic band structure waveguides, Journ. Lightwave Tech., 17, 2050–2058.

    Article  ADS  Google Scholar 

  24. M.C. Netti, M.D.B. Charlton, G.J. Parker, J.J. Baumberg (2000) Visible photonic bandgap engineering in silicon nitride waveguides, Appl. Phys. Lett. 76, 991–993.

    Article  ADS  Google Scholar 

  25. T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukaihara, F. Koyama and K. Iga (1996) A novel short-cavity laser with deep-grating distributed bragg reflectors, Jap. Journ. of Appl. Phys. 35, 1390–1394.

    Article  ADS  Google Scholar 

  26. E. Höf ling, F. Schäfer, J.P. Reithmaier, A. Forchel (1999) “Edge-emitting GaInAs-AlGaAs microlasers”, Photonics Technology Letters 11, 943–945.

    Article  ADS  Google Scholar 

  27. R. Windisch, C. Rooman, M. Kuijk, B. Dutta, G.H. Dohler, G. Borghs and P. Heremans (2000) “Micro-lensed gigabit-per-second high-efficiency quantum-well right-emitting diodes”, Electronics Letters 36, 351–352.

    Article  Google Scholar 

  28. National Science Foundation (1998) Harnessing Light: Optical Sciences and Engineering for the 21st Century, National Academy Press, Washington, D.C.

    Google Scholar 

  29. T. Baba, N. Fukaya, J. Yonekura (1999) Observation of light propagation in photonic crystal optical waveguides with bends, Electronics Letters 35, 654–655.

    Article  Google Scholar 

  30. H. Benisty, this volume.

    Google Scholar 

  31. P. Millar, R. M. De La Rue, T. F. Krauss, S. Aitchison, N.G.R. Broderick and D.J. Richardson (1999) Nonlinear propagation effects in an AlGaAs Bragg grating filter, Opt. Lett. 24, 685–687.

    Article  ADS  Google Scholar 

  32. R. Zengerle (1987) Light propagation in singly and doubly periodic planar waveguides, J. of Mod. Opt., 34, 1589–1617.

    Article  ADS  Google Scholar 

  33. H. G. Winful (1984) Pulse compression in optical fibre filters, Appl. Phys. Lett. 46, 527–529.

    Article  ADS  Google Scholar 

  34. N.G.R. Broderick, P. Millar, D.J. Richardson, J.S. Aitchison, R. De La Rue and T. F. Krauss (2000) Spectral features associated with nonlinear pulkse compression in Bragg gratings, Opt. Lett. 25, 740–742.

    Article  ADS  Google Scholar 

  35. N. Stefanou and A. Modinos (1998) Impurity bands in photonic insulators, Phys. Rev. B 57, 12127–12134.

    Article  ADS  Google Scholar 

  36. A. Yariv, Y. Xu, R.K. Lee and A. Scherer (1999) Coupled-resonator optical waveguide: A propoal and analysis, Opt. Lett. 24, 711–713.

    Article  ADS  Google Scholar 

  37. M. Bayindir, B. Temelkuran and E. Ozbay (2000) Propagation of photons by hopping: A waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals, Phys. Rev B 61, 11855–11858.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krauss, T.F. (2001). Patterned Photonic Crystal Waveguides. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics