Skip to main content

Lattice Dynamics of Manganese Oxides and Their Intercalated Compounds

  • Chapter
New Trends in Intercalation Compounds for Energy Storage

Part of the book series: NATO Science Series ((NAII,volume 61))

Abstract

Manganese oxides with tunnel and layered crystal structures constitute a large family of porous materials from ultramicropore to mesopore [1]. Most of the structural frameworks of the manganese dioxides (MD) consist of MnO6 octahedral units shared by corners and/or edges. The excellent electrochemical properties of several MD phases have attracting much attention for positive electrode materials in lithium batteries [2-5]. MnO2 was originally developed as electrode in Leclanché cells and, recently as positive electrode for a primary Li cell, but extensive research has been undertaken during the last decade to develop rechargeable Li//MnO2 cells [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feng, Q., Kanoh, H., and Ooi, K. J. (1999) Mater. Chem. 9, 319.

    Article  Google Scholar 

  2. Le Goff, P., Baffler, N., Bach S., and Pereira-Ramos, J.P. (1996) Mater. Res. Bull. 31, 63.

    Article  Google Scholar 

  3. Hunter, J.C. (1981) J. Solid State Chem. 39, 142.

    Article  Google Scholar 

  4. Thackeray, M.M., De Kock, A., De Piocciotto, L.A., and Pistoia, G. (1989) J. Power Sources 26, 355.

    Article  Google Scholar 

  5. Thackeray, M.M., Rossow, M.H., Gummow, R.J., Liles, D.C., Pearce, K., De Kock, A., David, I.F., and Hull, S. (1993) Electrochim. Acta 38, 1259.

    Article  Google Scholar 

  6. Nardi, J.C. (1985) J. Electrochem. Soc. 132, 1787.

    Article  Google Scholar 

  7. Palache, C., Berman, H., and Frondel, C. (1963) The System of Mineralogy, 7th ed., vol. 1, John Wiley and Sons, New York.

    Google Scholar 

  8. Ohzuku, T., Kitagawa, M., and Hirai, T. (1989) J. Electrochem. Soc. 137, 3169.

    Article  Google Scholar 

  9. LeGoff, P., Baffler, N., Bach, S., and Pereira-Ramos, J.P. (1994) J. Mater. Chem. 4, 4875.

    Article  Google Scholar 

  10. Potter. R.M., and Rossman G.R. (1979) Amer. Mineral. 64, 1199.

    Google Scholar 

  11. Richardson,T.J., and Ross Jr., P.N. (1996) Mater. Res. Bull. 31, 935.

    Article  Google Scholar 

  12. Richardson, T.J., Wen, S.J., Striebel, K.A., Ross Jr., P.N., and Cairns, E.J. (1997) Mater. Res. Bull. 32, 609.

    Article  Google Scholar 

  13. Wen, S.J., Richardson, T.J., Ma, L., Striebel, K.A., Ross Jr., P.N., and Cairns, E.J. (1996) J. Electrochem. Soc. 143, L136.

    Article  Google Scholar 

  14. Julien, C., Massot, M., Perez-Vicente, C., Haro-Poniatowski, E., Nazri, G.A., and Rougier, A. (1998) Mat. Res. Soc. Symp. Proc. 496, 415.

    Article  Google Scholar 

  15. Julien, C., Rougier, A., Haro-Poniatowski, E., and Nazri, G.A. (1998) Mol. Cryst. Liq. Cryst. 311, 81.

    Article  Google Scholar 

  16. Julien, C. (2000) Solid State Ionics 136-137, 887.

    Article  Google Scholar 

  17. Strohmeier, B.R. and Hercules, D.M. (1984) J. Phys. Chem. 88, 4923.

    Article  Google Scholar 

  18. Kapteijn, F., van Langeveld, A.D., Moulijn, J.A., Andreini, A., Vuurman, M.A., Turek, A.M., Jehng, J.M., and Washs, I.E. (1994) J. Catal. 150, 94.

    Article  Google Scholar 

  19. White, W.B. and Keramidas, V.G. (1972) Spectrochim. Acta 28A 501.

    Google Scholar 

  20. Chou, H.H. and Fan, H.Y. (1976) Phys. Rev. B 13, 3924.

    Article  Google Scholar 

  21. Gosztola, D. and Weaver, M.J. (1989) J. Electroanal. Chem. Interf. Electrochem. 271, 141.

    Article  Google Scholar 

  22. Bernard, M.C., Hugot-Le Goff, A., Thi, B.V., and Cordoba de Torresi, S. (1993) J. Electrochem. Soc. 140, 3065.

    Article  Google Scholar 

  23. Lopez de Mishima, B.A., Ohtsuka, T., and Sato, N. (1988) J. Electroanal. Chem. 243, 219.

    Article  Google Scholar 

  24. Lutz, H.D., Muller, B., and Steiner, H.J. (1991) J. Solid State Chem. 90, 54.

    Article  Google Scholar 

  25. Buciuman, F., Patcas, F., Craciun, R., and Zahn, D.R.T. (1999) Phys. Chem. Chem. Phys. 1, 185.

    Article  Google Scholar 

  26. Ammundsen, B., Burns, G.R., Islam, M.S., Kanoh, H., and Roziere, J. (1999) J. Phys. Chem. B 103, 5175.

    Article  Google Scholar 

  27. Fernandes, J.B., Desai, B., and Kamat Dalai, V.N. (1983) Electrochim. Acta 28, 309.

    Article  Google Scholar 

  28. Gattow, G. and Glemser, O. (1961) Z Anorg. Allg. Chem. 309, 121.

    Article  Google Scholar 

  29. Glemser, O., Gattow, G., and Meisiek, H. (1961) Z Anorg. Allg. Chem. 309, 1.

    Article  Google Scholar 

  30. Kolta, G.A., Abdel Kerim, F.M., and Abdul Azim, A.A. (1971) Z. Anorg. Allg. Chem. 384, 260.

    Article  Google Scholar 

  31. Ishii, M., Nakahira, M., and Yamanaka, T. (1972) Solid State Commun. 11, 209.

    Article  Google Scholar 

  32. Filiaux, F., Cachet, C.H., Ouboumour, H., Tomkinson, J., Levy-Clement, C., and Yu, L.T. (1993) J. Electrochem. Soc. 140, 585.

    Article  Google Scholar 

  33. Swinkels, D.A.J., Anthony, K.E., Fredericks, P.M., and Osborn, P.R. (1984) J. Electroanal. Chem. 168, 433.

    Article  Google Scholar 

  34. Amarilla, J.M., MacLean, L.A.H., Tedjar, F., Le Cras, F., Strobel, P., and Poinsignon, C. (1995) Mat. Res. Soc. Symp. Proc. 369, 87.

    Article  Google Scholar 

  35. Turner, S. and Buseck, P.R. (1981) Science 212, 1024.

    Article  Google Scholar 

  36. Li, L. and Pistoia, G. (1991) Solid State Ionics 47, 231.

    Article  Google Scholar 

  37. Sarciaux, S., Le Gal La Salle, A., Verbaere, A., Piffard Y., and Guyomard, G. (1999) Mat. Res. Soc. Symp. Proc. 548, 251.

    Article  Google Scholar 

  38. Tarascon, J.M. and Guyomard, G. (1991) J. Electrochem. Soc. 138, 2864.

    Article  Google Scholar 

  39. Manthiram, A. and Kim, J. (1998) Chem. Mater. 10, 2895.

    Article  Google Scholar 

  40. De Wolff, P.M. (1959) Acta Crystallogr. 12, 341.

    Article  Google Scholar 

  41. Chabre, Y. and Pannetier, J. (1995) Prog. Solid State Chem. 23, 1.

    Article  Google Scholar 

  42. Zachau-Christiansen, B., West, K., Jacobson, T., and Skaarup, S. (1994) Solid State Ionics 70-71, 401.

    Article  Google Scholar 

  43. White, W.B. and DeAngelis, B.A. (1967) Spectrochim. Acta A 23, 985.

    Article  Google Scholar 

  44. Julien, C., Gendron, F., Ziolkiewicz, S., and Nazri, G.A. (1999) Mat. Res. Soc. Symp. Proc. 548, 187.

    Article  Google Scholar 

  45. Tarte, P. (1967) J. Inorg. Nucl. Chem. 29, 915.

    Article  Google Scholar 

  46. Julien, C., Rougier, A., and Nazri, G.A. (1997) Mater. Res. Soc. Symp. Proc. 453, 647.

    Article  Google Scholar 

  47. Julien, C. (2001) Mater Sci. Eng. B (to be published).

    Google Scholar 

  48. Thackeray, M.M. (1997) Prog. Solid State Chem. 25, 1.

    Article  Google Scholar 

  49. David, W.I.F., Thackeray, M.M., Bruce, P.G., and Goodenough, J.B. (1987) J. Solid State Chem. 67, 316.

    Article  Google Scholar 

  50. Preudhomme, J. and Tarte, P. (1971) Spectrochim. Acta A 27, 845.

    Article  Google Scholar 

  51. Lutz, H.D., Becker, W., Muller, B., and Jung, M. (1989) J. Raman Spectrosc. 20, 99.

    Article  Google Scholar 

  52. Exarhos, G.J., and Risen, W.N. (1972) Solid State Commun. 11, 755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Julien, C., Massot, M. (2002). Lattice Dynamics of Manganese Oxides and Their Intercalated Compounds. In: Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds) New Trends in Intercalation Compounds for Energy Storage. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0389-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0389-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0595-4

  • Online ISBN: 978-94-010-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics