Skip to main content

Template-Directed Lattices of Nanostructures: Preparation and Physical properties

  • Chapter
Frontiers of Multifunctional Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 57))

  • 298 Accesses

Abstract

An introduction to the template method of preparation of regular 3-dimensional arrays of nanostructures in an internal space of opals is given. Application of all-dielectric opal-based materials as photonic crystals is discussed. Different opaline materials have been examined by means of the optical diffraction and the light emission and correlations of observed phenomena with the material structure have been demonstrated. Novel approach towards engineering of opaline materials via heterostructuring is presented. Recent progress in the field of nanostructured superconductors in opals is discussed. Striking enhancement of the critical magnetic field, which is followed the reduction of the superconductor volume fraction, has been shown. Outlook of using opal-based superconducting lattices as materials for quantum storage and processing of information is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.K. Hinley, J. H. P. Watson, Superconducting Metals in Porous Glass as Granular Superconductors Phys. Rev. 183, 525, (1969)

    Article  ADS  Google Scholar 

  2. V.N. Bogomolov, Liquids in ultrathin channels, Soviet Physics Uspehi 21,77 (1978)

    Article  ADS  Google Scholar 

  3. S.G. Romanov and CM. Sotomayor Torres. Three-dimensional lattices of nanostructurcs: the template approach, in “Handbook of Nanostructured Materials and Technology”, Ed. H.S. Nalwa, v.4, ch.4, pp.231–323, Acad. Press, 2000

    Google Scholar 

  4. V.N. Bogomolov, V.V. Zhuravlev, A.I. Zadotozhnii, E.V. Kolla, Yu.A. Kumzerov. Voltage-current characteristics of a regular system of weakly coupled superconducting particles. JETP Lett, 36, 365 (1982)

    ADS  Google Scholar 

  5. Y. Xia, B. Gates, Y. Yin, Yu Lu Monodispersed Colloidal Spheres: Old Materials with New Applications Adv. Maler. 12, 693, 2000

    Article  Google Scholar 

  6. V.N. Bogomolov, Yu.A. Kumzcrov, S.G. Romanov. Fabrication of three-dimensional superlattices of nanostructures. in “Physics of Nanostructures” eds J.H. Davies and A.R. Long. IOP Publishing, Bristol, Philadelphia, p.317, 1992

    Google Scholar 

  7. S.G. Romanov, 3-Dimcnsional Photonic Crystals at Optical Wavelengths (review), J.Nonlinear Optical Physics & Materials, 7,181–200, (1998)

    Article  ADS  Google Scholar 

  8. S. G. Romanov, Concept Of Templated Lattices Of Semiconductor Nanostructures, Journal of Porous Materials, 7(1/3), 153–157(2000)

    Article  Google Scholar 

  9. V.G.Balakirev, V.N.Bogomolov, V.V.Zhuravlev, Y.A.Kumzerov, V.P.Petranovskii, S.G. Romanov, LA.Samoilovich. Three-dimensional superlattices in the opals. Crystallography Reports, 38, 348–353 (1993)

    ADS  Google Scholar 

  10. Special issue on Photonic Crystals Adv. Mater., 13, no.6,369 (2000)

    Google Scholar 

  11. J.W. Goodwin. J. Hearn, C.C. Ho, R. H Ottewill, Sudies on the preparation and characterisation of monodisperse polystyrene Utices, Colloid Polym. Sei. 252,464 (1974) A. van Blaaderen, R. Ruel, P. Wiltzius, Template-directed colloidal crystallization. Nature 385,321 (1997) B. Gates, D. Qin, Y. Xia, Assembly of nanoparticles into opaline structures over large areas. Adv. Mat. 11,466 (1999)

    Article  Google Scholar 

  12. P.A. Kralchevsky, N.D. Denkov. V.N. Paunov, O.D. Velev, I.B. Ivanov, H. Yoshimura, K. Nagayama, Formation of two-dimensional colloid crystals in liquid films under the action of capillary forces, J. Phys.: Condens. Matter 6, A395 (1994)

    Article  ADS  Google Scholar 

  13. R. Amos, J.G, Rarity, P.R. Tapster and T.J. Shepherd, Fabrication of large-area facc-ccntered-cubic hard-sphere colloidal crystals by shear alignment, Phys. Rev. E 61, 2929 (2000)

    Article  ADS  Google Scholar 

  14. JEGI Wijnhoven, W.L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281, 802 (1998) A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Migucz, J.P. Mondia, G.A. Ozin, O. Toader, RM. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, Nature 405, 437 (2000)

    Article  ADS  Google Scholar 

  15. M. Müller, R. Zcntcl, T. Maka, S.G. Romanov, CM. Sotomayor Torres, Photonic crystal films with high refractive index contrast. Adv. Mat. 12, 1499(2000)

    Article  Google Scholar 

  16. V.P. Bykov, Spontaneous emission in a periodic structure, Sov. Phys. JETP 35,269 (1972).

    ADS  Google Scholar 

  17. E. Yablonovich, Inhibited spontaneous emission in solid-state physics and electronics, Phys Rev. Lett 58, 2059 (1987); S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys Rev. Lett 58, 2486 (1987)

    Article  ADS  Google Scholar 

  18. S. Noda, N. Yamamoto, M. Imrada. H. Kobayashi, M. Okato, Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion. J. Lightwave Technol. 17,1948 (1999) B. Cuisin, A. Chelnokov, J.M. Louttioz, D. Decanini Y. Chen, Fabrication of three-dimensional photonic structures with Kubmicrometer resolution by x-ray lithography. J. Vac. Sei. Technol. B 18, 3535 (2000)

    Article  ADS  Google Scholar 

  19. K. Wang. A. Chelnokov, S. Rowson, P. Garoche, J.M. Lourtioz, Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals, J. Phys. D: Appl. Phys. 33, L119 (2000)

    Article  ADS  Google Scholar 

  20. S.Y. Lin, J.G. Fleming, A three dimensional optical photonic crystal, J. Lightwave Technol. 17,1944 (2000)

    Article  ADS  Google Scholar 

  21. M. Champbell, D.N. Sharp, M.T. Harrison, R.G. Denning, AJ. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53 (2000)

    Article  ADS  Google Scholar 

  22. E. Kuramochi, M. Notorni, T. Tamamura, T. Kawashima, S. Kawakami, J. Takahashi, C. Takahashi, Drilled alternating-layer structure for three-dimensional photonic crystals with a full band gap, J. Vac. Sei. Technol. B18, 3510 (2000)

    Google Scholar 

  23. M, Mueller, R. Zentel, T. Maka, S. G. Romanov, C. M. Sotomayor Torres, Dye-Containing Polymer Beads as Photonic Crystals, Chem. Materials, 12, 2508–2512 (2000)

    Article  Google Scholar 

  24. H.S. Soziier, J.W. Haus, R. Inguva, Photonic bands: Convergence problems with the plane-wave method, Phys. Rev. B 45. 13962(1992)

    Article  ADS  Google Scholar 

  25. K. Busch, S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E 58, 3896 (1998)

    Article  ADS  Google Scholar 

  26. Yu. A. Vlasov, M. Deutsch, D.J. Norris, Single-domain spectroscopy of self-assembled photonic crystals, Appl. Phys. Lett. 76, 1627 (2000) A. Reynolds, F. López-Tejeira, D. Cassagne, F.J. Gareia-Vidal, C. Jouanin, and J. Sánchcz-Dehesa, Spectral properties of opal-based photonic crystals having a SiO2 matrix, Phys. Rev. B. 60,11422 (1999)

    Article  ADS  Google Scholar 

  27. H.M. van Driel, W.L. Vos, Multiple Bragg wave coupling in photonic band-gap crystals, Phys. Rev. B. 62, 9872 (2000)

    Article  ADS  Google Scholar 

  28. S.G. Romanov, T. Maka, CM. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanarcs-Martincz and C. Jouanin, Diffraction of light from thin-film polymethylmcihacrylate opaline photonic crystals, Phys. Rev. E 63, 056603 (2001)

    Article  ADS  Google Scholar 

  29. M. Müller, R. Zentel, T. Maka, S. G. Romanov, C. M. Sotomayor Torres, Photonic Crystal Films with High Refractive Index Contrast, Adv. Materials 12, 1499–1503 (2000)

    Article  Google Scholar 

  30. E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys.Rev. 69, 681 (1946)

    Article  Google Scholar 

  31. O.J. Painter, A. Husain, A. Sherer, J. D. O’Brien, I. Kim, P.D. Dapkus, Room temperature photonic crystal defect lasers at near infrared wavelengths in inGaAsP, J. Lightwave Technology 17,2082–2088 (1999) A. L. Rogach, L. Katstkas, A. Komowski, D. Su, A. Eychmüller, H. Weller, Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber. Bunsenges. Phys. Chem., 100,1772-1778.(1996)

    Article  ADS  Google Scholar 

  32. T. Suzuki, P.K.L. Yu, Emission Power Of An Electric Dipole In The Photonic Band Structure Of The Fee Lattice, J. Opt. Soc.Am.B, 12,570(1995)

    Article  ADS  Google Scholar 

  33. M. Megens, JEGJ Wijnhoven, A. Lagendijk, W.L. Vos, Light sources inside photonic crystals, J. Opt. Soc. Am. B 16 1403 (1999)

    Article  ADS  Google Scholar 

  34. S.G. Romanov, A.V. Fokin, R.M. de la Rue, Eu3+ Emission in an Anisotropie Photonic Bandgap Environment, Appl. Phys. Lett. 76,1656(2000)

    Article  ADS  Google Scholar 

  35. S. G. Romanov, H. M. Yates, M. E. Pemble, R. M De La Rue, Opal-Based Photonic Crystal with Double Photonic Bandgap Structure, J. Phys.: Cond. Matter 12, 8221–8229 (2000)

    Article  ADS  Google Scholar 

  36. P. St. J. Russel Bragg Resonance of light in optical supcrlattices, Phys. Rev. Lett. 56, 596 (1986)

    Article  ADS  Google Scholar 

  37. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, V. L. Colvin, The Fabrication and Bandgap Engineering of Photonic Multilayers, Adv. Maler., 13, 389, (2001)

    Article  Google Scholar 

  38. V.V. Moschalkov, V. Bruyndoncx, L. Nan Look, M.J. Van Bad, Y. Bruynscracdc, A. Tonomura, Quantization and confinement phenomena in nanostructured superconductors, in “Handbook of Nanostructures and Nanotechnology”, ed. H.S. Nalwa, Acad, Press, 2000, v.3,451.

    Google Scholar 

  39. W.A. Little, R.D. Parks, Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder, Phys. Rev. Lett., 9, 9 (1962)

    Article  ADS  Google Scholar 

  40. H.S J. van der Zant, M. N. Webster, J. Romijn, J. E. Mooij, Vortices in two-dimensional superconducting weakly coupled wire networks, Phys. Rev. B, 50, 340 (1994)

    Article  ADS  Google Scholar 

  41. V.N. Bogomolov, Y.A. Kumzerov, S.G. Romanov, V.V. Zhuravlev. Josephson properties of the three-dimensional regular lattice of the weakly coupled nanoparticlcs. Physica C: Superconductivity, 208, 371 (1993)

    Article  ADS  Google Scholar 

  42. E.V. Chamaya, C. ein. K.j. Lin, C. S. Wur, Yu. A. Kumzerov, Superconductivity of gallium in various confined geometries, Phys. Rev. B, 58,467 (1998)

    Article  ADS  Google Scholar 

  43. S.G. Romanov, A.V. Fokin, K. Babamuratov, Resistance anomalies and negative magnetoresistance in a regular 3D lattice of superconducting nanostructures. JETP Lett., 58,824, (1993)

    ADS  Google Scholar 

  44. S.G. Romanov, D.V. Shamshur. Suppression of the superconductivity in 3-dimensional lattice of weakly coupled indium nanoparticles in opal. Solid Stale Physics, 42, no. 4, 581–588 (2000) (Fizika tverdogo tela, 42, no. 4, pp.5-12 (2000) in Russian))

    Google Scholar 

  45. V.V. Tretyakov, S.G. Romanov, A.V. Fokin and V.l. Alperovich. Electron Quantitative Microanalysis of Composition of Opals-Based Nanostructured Materials, Mikrochimica Acta, No.S15, pp.211–217 (1998)

    Google Scholar 

  46. H.T. Vogel, M.M. Garland, J. Appl.Phys. 38, 5116 (1967)

    Article  ADS  Google Scholar 

  47. S. Lloyd, A potentially realizable quantum computer. Science, 261,1589 (1993)

    Article  ADS  Google Scholar 

  48. D.P. Di Vincenzo, Quantum computation. Science, 269,225 (1995)

    Google Scholar 

  49. T.P. Orlando, J.E. Mooij, L. Tan, C:H: van der Wai, L.S. Leditov, S. Lloyd, J.J. Mazo, Superconducting persistent-currant qubit, Phys. Rev. B, 60, 15398 (1999)

    Article  ADS  Google Scholar 

  50. A.Franz, A. Wallraff,.A. V. Ustinov, Measurements of critical-current diffraction patterns in annular Josephson junctions. Phys. Rev. B 62,119(2000)

    Article  ADS  Google Scholar 

  51. S. Ktitorov and Yu.I. Kuzmin, private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Romanov, S.G. (2002). Template-Directed Lattices of Nanostructures: Preparation and Physical properties. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics