Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 58))

Abstract

Gate-Ail-Around (GAA) transistors are thin, fully depleted SOI MOSFETs with a double gate structure. When used at high temperature GAA devices present low leakage current, minimal threshold voltage shift and, in general, better characteristics than bulk or even SOI MOSFETs. The radiation hardness of GAA devices is reported as well, and the dose evolution of parameters such as threshold voltage, subthreshold slope and output conductance is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.S.P. Wong, D.J. Frank, P.M. Salomon, “Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFETs at the 25 nm channel length generation”, Tech. Digest of IEDM, p. 98, 1998

    Google Scholar 

  2. H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, F. Masuoka, “High performance CMOS Surrounding Gate Transistor (SGT) for ultra high density LSIs”, Tech. Digest IEDM, pp. 222–225, San Francisco, 1988

    Google Scholar 

  3. D. Hisamoto, T. Kaga, Y. Kawamoto, E. Takeda, “A fully depleted Lean-channel Transistor (DELTA) — A novel vertical ultrathin SOI MOSFET”, Tech. Digest of IEDM, pp. 833–836, Washington, 1989.

    Google Scholar 

  4. H.S.P. Wong, K.K. Chan, Y. Taur, “Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel”, Tech. Digest IEDM, p. 427, 1997

    Google Scholar 

  5. J.P. Denton and G.W. Neudeck, “Fully depleted dual-gated thin-film SOI P-MOSFETs fabricated in SOI islands with an isolated buried polysilicon backgate”, IEEE Electron Device Letters, Vol. 17-11, p.509, 1996

    Article  Google Scholar 

  6. J.P. Colinge, M.H. Gao, A. Romano-Rodriguez, H. Maes, C. Claeys, “Silicon-On-Insulator Gate-All-Around Device”, ” Tech. Digest IEDM, pp. 595–598, 1990

    Google Scholar 

  7. F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, T. Elewa, “Double-Gate Silicon-on-Insulator Transistor with volume inversion: A new device with greatly enhanced performance”, IEEE Electron Device Letters, vol. 8, no. 9, pp. 410–412, September 1987

    Article  Google Scholar 

  8. X. Baie, J.P. Colinge, “Two-dimensional confinement effects in gate-all-around (GAA) MOSFETs”, Solid-State Electronics, Vol. 42, No. 4, pp. 499–504, 1998

    Article  Google Scholar 

  9. B. Majkusiak, T. Janik, J. Walczak, “Semiconductor Thickness Effects in Double-Gate SOI MOSFET”, IEEE Trans, on Electron Dev., vol. 45, no. 5, May 1998

    Google Scholar 

  10. M. Haond, O. Le Neel, G. Mascarin, J.P. Gonchond, “Gate oxide breakdown in an SOI CMOS process using MESA isolation”, Proc. ESSDERC, Springer-Verlag, pp. 893–896, Berlin, 1989

    Google Scholar 

  11. T. Mukaiyama, K.I Saito, H. Ishikuro, M. Takamiya, T. Araya and T. Hiramoto, “Fabrication of Gate-All-Around MOSFET by silicon anisotropic etching technique”, Solid-State Electronics, vol. 42, n.7, pp.1623–1626, 1998.

    Article  Google Scholar 

  12. J.P. Colinge, “Silicon-On-Insulator Technology: Materials to VLSI”, 2nd edition, 1997

    Google Scholar 

  13. P. Francis, A. Terao, B. Gentinne, D. Flandre, J.P. Colinge, “SOI technology for high-temperature applications”, Tech. Digest IEDM, p. 353, 1992

    Google Scholar 

  14. D.S. Jeon, D.E. Burk, “A temperature-dependent SOI MOSFET model for high-temperature application (27°C-300°C)”, IEEE Trans, on Electron Devices, vol. 38, no. 9, September 1991

    Google Scholar 

  15. C. Lombardi, S. Manzini, A. Saporito, M. Vanzi, “A physically based mobility model for numerical simulations of nonplanar devices”, IEEE Trans. CAD 7(11), p. 1164, 1988

    Google Scholar 

  16. D.S. Jeon, D.E. Burk, “A temperature-dependent SOI MOSFET model for high-temperature application (27°C-300°C)”, IEEE Trans, on Electron Devices, vol. 38, no. 9, September 1991

    Google Scholar 

  17. P. Francis, A. Terao, B. Gentinne, D. Flandre, J.P. Colinge, “SOI technology for high-temperature applications”, Tech. Digest of the IEDM, p. 353, 1992

    Google Scholar 

  18. P. Francis, “Double-gate SOI/MOS devices and circuits in hostile environments”, thesis UCL, 1996.

    Google Scholar 

  19. D. Flandre, A. Terao, “Extended theoretical analysis of the steady-state linear behavior of accumulationmode, long-channel p-MOSFETs on SOI substrates”, Solid-State Electronics, vol. 35, no. 8, pp. 1085–1092, 1992

    Article  Google Scholar 

  20. D. Flandre, A. Terao, P. Francis, B. Gentinne, J.P. Colinge, “Demonstration of the potential of accumulation-mode MOS transistors on SOI substrates for high-temperature operation (150–300C)”, IEEE Electron Device Letters, vol. 14, no. 1, pp. 10–12, 1993

    Article  Google Scholar 

  21. S.M. Sze, Physics of semiconductor Devices, 2nd ed., New York, Wiley, p. 91, 1981

    Google Scholar 

  22. A. Vandooren, P. Francis, D. Flandre, J.P. Colinge, “Performance of gamma-irradiated gate-all-around SOI MOS OTA amplifiers”, Proc. IEEE International SOI Conference, pp. 62–63, 1997

    Google Scholar 

  23. “Drain conductance degradation in gate-all-around inversion-mode nMOSFETs with total dose”, A. Vandooren and J.P. Colinge, in “Silicon-on-Insulator Technology and Devices IX”, Ed. by. P.L. Hemment, Electrochemical Society Proceedings Volume 99.3, pp. 323–328, 1999

    Google Scholar 

  24. C.C. Enz, in Low-power HF microelectronics: a unified approach, edited by G.A.S. Machado, IEE circuits and systems series 8, the Institution of Electrical Engineers, p. 247, 1996

    Google Scholar 

  25. H.J. Ziock et al., “Measurement of proton induced radiation damage to CMOS transistors and PIN diodes”, IEEE Trans. Nucl. Sci., vol. 37, no. 3, June, 1990

    Google Scholar 

  26. A. Vandooren, “Advanced characterization of double-gate/gate-all-around SOI devices and circuits”, Doctoral Dissertation, U.C. Davis, Sept. 2000

    Google Scholar 

  27. P. Francis, J.P. Colinge, G. Berger, “Temporal analysis of SEU in SOI/GAA SRAMs”, IEEE Transaction on Nuclear Science, Vol. 42-6, pp. 2127–2137, 1995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colinge, J.P. (2002). Gate-All-Around Technology for Harsh Environment Applications. In: Balestra, F., Nazarov, A., Lysenko, V.S. (eds) Progress in SOI Structures and Devices Operating at Extreme Conditions. NATO Science Series, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0339-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0339-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0576-3

  • Online ISBN: 978-94-010-0339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics