Skip to main content

Evolutionary experiments on mate recognition in the Drosophila serrata species complex

  • Chapter
Genetics of Mate Choice: From Sexual Selection to Sexual Isolation

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 9))

Abstract

It is becoming increasingly apparent that at least some aspects of the evolution of mate recognition may be amenable to manipulation in evolutionary experiments. Quantitative genetic analyses that focus on the genetic consequences of evolutionary processes that result in mate recognition evolution may eventually provide an under- standing of the genetic basis of the process of speciation. We review a series of experiments that have attempted to determine the genetic basis of the response to natural and sexual selection on mate recognition in the Drosophila serrata species complex. The genetic basis of mate recognition has been investigated at three levels: (1) between the species of D. serrata and D. birchii using interspecific hybrids, (2) between populations of D. serrata that are sympatric and allopatric with respect to D. birchii, and (3) within populations of D. serrata. These experiments suggest that it may be possible to use evolutionary experiments to observe important events such as the reinforcement of mate recognition, or the generation of the genetic associations that are central to many sexual selection models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersson, M., 1994. Sexual Selection. Princeton University Press, New Jersey.

    Google Scholar 

  • Arnold, S.J., 1992. Constraints on phenotypic evolution. Am. Nat. 140: S85–S107.

    Article  PubMed  Google Scholar 

  • Arnold, S.J. & P.C. Phillips, 1999. Hierarchical comparison of genetic variance-covariance matrices. II. Coastal-inland divergence in the garter snake, Thamnophis elegans. Evolution 53: 1516–1527.

    Article  Google Scholar 

  • Ayala, F.J., 1965. Sibling species of the Drosophila serrata group. Evolution 19: 538–545.

    Article  Google Scholar 

  • Bakker, T.C.M., 1993. Positive genetic correlation between female preference and preferred male ornament in sticklebacks. Nature 363: 255–257.

    Article  Google Scholar 

  • Barton, N., 2000. The rapid origin of reproductive isolation. Science 290: 462–463.

    Article  PubMed  CAS  Google Scholar 

  • Barton, N.H. & M. Turelli, 1987. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genet. Res. 49: 157–173.

    Article  PubMed  CAS  Google Scholar 

  • Blows, M.W., 1998. Evolution of a mate recognition system after hybridization between two Drosophila species. Am. Nat. 151: 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Blows, M.W., 1999. Evolution of the genetic covariance between male and female components of mate recognition: an experimental test. Proc. R. Soc. Lond. B 266: 2169–2174.

    Article  CAS  Google Scholar 

  • Blows, M.W., 2002. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. R. Soc. Lond. B 269: 1113–1118.

    Article  Google Scholar 

  • Blows, M.W. & R.A. Allan, 1998. Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152: 826–837.

    Article  PubMed  CAS  Google Scholar 

  • Blows, M.W. & M. Higgie. Genetic constraints on the evolution of evolution of mate recognition under natural selection. Am. Nat. (in press).

    Google Scholar 

  • Bock, I.R., 1976. Drosophilidae of Australia. I. Drosophila (Insecta: Diptera). Aust. J. Zool., Supp. Ser. No. 40.

    Google Scholar 

  • Bock, I.R., 1984. Interspecific hybridization in the genus Drosophila. Evol. Biol. 17: 41–70.

    Article  Google Scholar 

  • Breden, F., H.C. Gerhardt & R.K. Butlin, 1994. Female choice and genetic correlations. Trends Ecol. Evol. 9: 343.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, R., 2000. Negative genetic correlation between male sexual attractiveness and survival. Nature 406: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, R. & V. Couldridge, 1999. Multiple sexual ornaments co-evolve with multiple mating preferences. Am. Nat. 154: 37–45.

    Article  Google Scholar 

  • Burger, R. & R. Lande, 1994. On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance. Genetics 138: 901–912.

    PubMed  CAS  Google Scholar 

  • Butlin, R.K., G.M. Hewitt & S.F. Webb, 1985. Sexual selection for intermediate optimum in Chorthippus brunneus (Orthoptera: Acrididae). Anim. Behav. 33: 1281–1292.

    Article  Google Scholar 

  • Butlin, R., 1987. Speciation by reinforcement. Trends Ecol. Evol. 2: 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Butlin, R., 1989. Reinforcement of premating isolation, pp. 158–179 in Speciation and Its Consequences, edited by D. Otte & J.A. Endler. Sinauer Associates, Sunderland.

    Google Scholar 

  • Butlin, R., 1995. Reinforcement: an idea evolving. Trends Ecol. Evol. 10: 432–434.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, S.H., T. Tregenza & R.K. Butlin, 1997. Speciation and signal trait genetics. Trends Ecol. Evol. 12: 299–301.

    Article  PubMed  CAS  Google Scholar 

  • Carson, H.L., F.C. Val & A.R. Templeton, 1994. Change in male secondary sexual characters in artificial interspecific hybrid populations. Proc. Natl. Acad. Sci. USA 91: 6315–6318.

    Article  PubMed  CAS  Google Scholar 

  • Cobb, M. & J.M. Jallon, 1990. Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Anim. Behav. 39: 1058–1067.

    Article  Google Scholar 

  • Coyne, J.A., 1992. Genetics of speciation. Nature 355: 511–515.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J.A., A.R Crittenden & K. Mah, 1994. Genetics of a phero-monal difference contributing to sexual isolation in Drosophila. Science 265: 1461–1464.

    Article  PubMed  CAS  Google Scholar 

  • Coyne, J.A. & B. Charlesworth, 1997. Genetics of a pheromone difference affecting sexual isolation between Drosophila mauri-tiana and D sechellia. Genetics 145: 1015–1030.

    PubMed  CAS  Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1998. The evolutionary genetics of speciation. Phil. Trans. R. Soc. Lond. B 353: 287–305.

    Article  CAS  Google Scholar 

  • Dobzhansky, T., 1951. Genetics and the Origin of Species. Columbia University Press, New York, 3rd edn.

    Google Scholar 

  • Endler, J.A. & A.E. Houde, 1995. Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution 49: 456–468.

    Article  Google Scholar 

  • Gray, D.A. & W.H. Cade, 1999. Quantitative genetics of sexual selection in the field cricket Gryllus integer. Evolution 53: 848–854.

    Article  Google Scholar 

  • Gray, D.A. & W.H. Cade, 2000. Sexual selection and speciation in field crickets. Proc. Natl. Acad. Sci. USA 97: 14449–14454.

    Article  PubMed  CAS  Google Scholar 

  • Harshman, L.G. & A.A. Hoffmann, 2000. Laboratory selection ex-periments using Drosophila: what do they really tell us? Trends Ecol. Evol. 15: 32–36.

    Article  PubMed  Google Scholar 

  • Hasselquist, D., S. Bensch & T. von Schantz, 1996. Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler. Nature 381: 229–232.

    Article  CAS  Google Scholar 

  • Higgie, M., S. Chenoweth & M.W. Blows, 2000. Natural selec-tion and the reinforcement of mate recognition. Science 290: 519–521.

    Article  PubMed  CAS  Google Scholar 

  • Hine, E., S. Lachish, M. Higgie & M.W. Blows. Positive genetic correlation between female preference and offspring fitness. Proc. R. Soc. Lond. B (in press).

    Google Scholar 

  • Hoikkala, A. & S. Crossley, 2000. Copulatory courtship in Dro-sophila: behaviour and songs in D. birchii and D. serrata. J. Insect Behav. 13:71–87.

    Article  Google Scholar 

  • Houde, A.E., 1994. Artificial selection on male colour patterns shifts mating preferences of female guppies. Proc. R. Soc. Lond. B 256: 125–130.

    Article  Google Scholar 

  • Houle, D. & A.S. Kondrashov, 2002. Coevolution of costly mate choice and condition-dependent display of good genes. Proc. R. Soc. Lond. B 269:97–104.

    Article  Google Scholar 

  • Howard, D.J., 1993. Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis, pp. 46–69 in Hybrid Zones and the Evolutionary Process, edited by R.G. Harrison. Oxford University Press, New York.

    Google Scholar 

  • Howard, R.W., L.L. Jackson, H. Banse & M.W. Blows. Cuticular hydrocarbons of Drosophila birchii and D. serrata: identification and role in mate choice in D. serrata. (in preparation).

    Google Scholar 

  • Iwasa, Y., A. Pomiankowski & S. Nee, 1991. The evolution of costly mate preferences. II. The “Handicap” principle. Evolution 45: 1431–1442.

    Article  Google Scholar 

  • Iwasa, Y & A. Pomiankowski, 1995. Continual change in matte preferences. Nature 377: 420–422.

    Article  PubMed  CAS  Google Scholar 

  • Jallon, J.M., 1984. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14: 441–478.

    Article  PubMed  CAS  Google Scholar 

  • Jennions, M.D., A.P Moller & M. Petrie, 2001. Sexually-selected traits and adult survival: a meta-analysis. Quart. Rev. Biol. 76 3–36.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1989. Quantitative genetic variability maintained by mutation-stabilizing selection: sampling variation and response to subsequent directional selection. Genet. Res. 54: 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, M., 1987. Sexual selection by female choice in poly-gynous animals. Ann. Rev. Ecol. Syst. 18: 43–70.

    Article  Google Scholar 

  • Kirkpatrick, M. & N.H. Barton, 1995. Deja vu all over again. Nature 377: 388–389.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, M. & N.H. Barton, 1997. The strength of indirect selection on female mating preferences. Proc. Natl. Acad. Sci. USA 94: 1282–1286.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R., 1979. Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33: 402–116.

    Article  Google Scholar 

  • Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. & B. Walsh, 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Massachusetts.

    Google Scholar 

  • Nelson, D.R., 1993. Methyl-branched lipids in insects, pp. 271–315 in Insect Lipids: Chemistry, Biochemistry and Biology, edited by D.W. Stanley-Samuelson & D.R. Nelson. University of Nebraska Press, Lincoln.

    Google Scholar 

  • Noor, M.A., 1995. Speciation driven by natural selection in Dro-sophila. Nature 375: 674–675.

    Article  PubMed  CAS  Google Scholar 

  • Norris, K., 1993. Heritable variation in a plumage indicator of viability in male great tits Parus major. Nature 362: 537–539.

    Article  Google Scholar 

  • Orr, H.A., 2001. The genetics of species differences. Trends Ecol. Evol. 16: 343–350.

    Article  Google Scholar 

  • Partridge, L., 1980. Mate choice increases a component of offspring fitness in fruit flies. Nature 283: 290–291.

    Article  Google Scholar 

  • Paterson, H.E.H., 1985. The recognition concept of species, pp. 21–29 in Species and Speciation, edited by E. Vrba. Transvaal Museum Monograph 4, Pretoria, South Africa.

    Google Scholar 

  • Pomiankowski, A. & L. Sheridan, 1994. Linked sexiness and choosiness. Trends Ecol. Evol. 9: 242–244.

    Article  PubMed  CAS  Google Scholar 

  • Petrie, M., 1994. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 371: 598–599.

    Article  CAS  Google Scholar 

  • Rice, W.R. & E.E. Hostert, 1993. Laboratory experiments on speciation: what have we learned in forty years. Evolution 47: 1637–1653.

    Article  Google Scholar 

  • Rundle, H.D. & D. Schluter, 1998. Reinforcement of stickleback mate preferences: sympatry breeds contempt. Evolution 52: 200–208.

    Article  Google Scholar 

  • Ryan, M.J. & A.S. Rand, 1993. Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47: 647–657.

    Article  Google Scholar 

  • Schluter, D., 1988. Estimating the form of natural selection on a quantitative trait. Evolution 42: 849–861.

    Article  Google Scholar 

  • Schluter, D., 1996. Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774.

    Article  Google Scholar 

  • Schluter, D., 2001. Ecology and the origin of species. Trends Ecol. Evol. 16: 372–380.

    Article  PubMed  Google Scholar 

  • Spieth, H.T. & J.M. Ringo, 1983. Mating behaviour and sexual isolation in Drosophila, pp. 223–284 in The Genetics and Biology of Drosophila, Vol. 3C, edited by M. Ashburner, H.L. Carson & J.N. Thompson. Academic Press, London.

    Google Scholar 

  • Turelli, M., N.H. Barton & J.A. Coyne, 2001. Theory and speciation. Trends Ecol. Evol. 16: 330–343.

    Article  PubMed  Google Scholar 

  • Wallace, B., M.W. Timm & M.P.P. Strambi, 1983. The establishment of novel mate recognition systems in introgressive hybrid Drosophila populations. Evol. Biol. 16: 467–488.

    Article  Google Scholar 

  • Wilkinson, G.S. & RR. Reillo, 1994. Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly. Proc. R. Soc. Lond. B 255: 1–6.

    Article  Google Scholar 

  • Wu, C.-I., H. Hollocher, D.J. Begun, C.F.. Aquadro, Y. Xu & M.-L. Wu, 1995. Sexual isolation in Drosophila melanogasten a possible case of incipient speciation. Proc. Natl. Acad. Sci. USA 92:2519–2523.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. J. Etges M. A. F. Noor

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blows, M.W., Higgie, M. (2002). Evolutionary experiments on mate recognition in the Drosophila serrata species complex. In: Etges, W.J., Noor, M.A.F. (eds) Genetics of Mate Choice: From Sexual Selection to Sexual Isolation. Contemporary Issues in Genetics and Evolution, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0265-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0265-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3958-1

  • Online ISBN: 978-94-010-0265-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics