Skip to main content

Thermoacoustic Refrigeration: Low-Temperature Applications and Optimization

  • Chapter
Low Temperature and Cryogenic Refrigeration

Part of the book series: NATO Science Series ((NAII,volume 99))

Abstract

During the past two decades the thermoacoustic refrigeration and prime mover cycle has gained importance in a variety of refrigeration applications. Sound can be used to generate temperature differences that allow the transport of heat from a low temperature reservoir to an ambient at higher temperature, resulting in a thermoacoustic refrigeration system. The thermoacoustic energy pumping cycle can also be reversed and a temperature difference imposed along the stack plates can lead to sound generation. In this situation the thermoacoustic system operates as a prime mover. Sound generated by means of the thermoacoustic energy conversion process can be utilized to drive different types of refrigeration devices that require oscillatory flow for their operation, such thermoacoustic refrigerators, pulse tubes and Stirling engines. In order for a thermoacoustic refrigeration or prime mover system as well as a thermoacoustic prime mover driving a non-thermoacoustic refrigeration system to be competitive on the current market, it has to be optimized in order to improve its efficiency. Depending on the application, different optimization criteria can be used to design such systems, and some of these criteria are discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gauger, D.C., Shapiro, H.N. and Pate, M.B. (1995) Alternative Technologies for Refrigeration and Air-Conditioning Applications, Environmental Protection Agency Publication EPA/600/SR-95/066.

    Google Scholar 

  2. Wheatley, J.C., Hofler, T., Swift, G.W. and Migliori, A. J (1983) An Intrinsically Irreversible Thermoacoustic Heat Engine, J. Acoust. Soc. Am., 74(1), pp. 153–170.

    Article  ADS  Google Scholar 

  3. Wheatley, J., Hofler, T., Swift, G.W. and Migliori, A. (1985) Understanding Some Simple Phenomena in Thermoacoustics with Applications to Acoustical Heat Engines, Am. J. Phys. 53(2), pp. 147–161.

    Article  ADS  Google Scholar 

  4. Wheatley, J.C., Swift, G.W. and Migliori, A. (1986) The Natural Heat Engine, Los Alamos Science, No. 14, Fall 1986.

    Google Scholar 

  5. Swift, G.W. (1995) Thermoacoustic Engines and Refrigerators, Physics Today, July 1995, pp. 22–28.

    Google Scholar 

  6. Wheatley, J.C. (1986) Intrinsically Irreversible or Natural Engines, Los Alamos National Laboratory-MS K764.

    Google Scholar 

  7. Swift, G.W. (1988) Thermoacoustic Engines, J. Acoust. Soc. Am. 84(4), pp. 1145–1180.

    Article  ADS  Google Scholar 

  8. Hofler, T.J., Thermoacoustic Refrigerator Design and Performance, Dissertation, University of California, San Diego, 1986.

    Google Scholar 

  9. Wetzel, M. and Herman, C. (1997) Design Optimization of Thermoacoustic Refrigerators, International Journal of Refrigeration, Vol. 20, No.1, pp. 3–21.

    Article  Google Scholar 

  10. Worlikar A., Knio O. (1996) Numerical Simulation of a Thermoacoustic Refrigerator, Journal of Computational Physics 127, pp. 424–451.

    Article  ADS  MATH  Google Scholar 

  11. Atchley, A.A., Hofler, T.J., Muzzerall, M.L., Kite, D. and Ao, C. D. (1990) Acoustically Generated Temperature Gradients in Short Plates, J. Acoust. Soc. Am. 88(1), pp.251–263.

    Article  ADS  Google Scholar 

  12. Wetzel, M. and Herman, C. (2000) Experimental Study of Thermoacoustic Effects on a Single Stack Plate-Part I: Temperature Fields, Heat and Mass Transfer, Vol. 36, pp. 7–20.

    Article  ADS  Google Scholar 

  13. Wetzel, M. and Herman, C. (1999) Experimental Study of Thermoacoustic Effects on a Single Stack Plate-Part II: Heat Transfer, Heat and Mass Transfer, Vol. 35, pp. 433–441.

    Article  ADS  Google Scholar 

  14. Rott, N. (1980) Thermoacoustics, Adv. Appl. Mech., vol.20, pp. 135–175.

    Article  ADS  MATH  Google Scholar 

  15. Radebaugh, R. (1990) A Reviw of Pulse Tube Refrigeration, Adv. Cryogenic Eng., 35, p. 1191.

    Google Scholar 

  16. Swift, G.W (1997) Thermoacoustic Natural Gas Liquefier, Proc. DOE Natural Gas Conference, Houston.

    Google Scholar 

  17. Swift, G.W, Martin, R.A. and Radebaugh, R. (1990) Acoustic Cryocooler, US Patent No. 4,953,366.

    Google Scholar 

  18. Radebaugh, R., McDermott, K.M., Swift, G.W and Martin, R.A. (1990) Development of a Thermoacoustically Driven Orifice Pulse Tube refrigerator, Proc. 1990 Interagency Meeting on Cryocoolers, Plymouth, MA, (David Taylor Research Center publication DTRC-91/003, 1991).

    Google Scholar 

  19. Incropera, F.P., De Witt, D. P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 1990.

    Google Scholar 

  20. Giacobbe, F.W., Estimation of Prandtl Numbers in Binary Mixtures of Helium and Other Noble Gases, J. Acoust. Soc. Am., 96 (6), Dec. 1994, pp. 3568–3580.

    Article  ADS  Google Scholar 

  21. Wilke, C.R., A Viscosity Equation for Gas Mixtures, J. Chem. Phys. 18, 1950, pp. 517–519.

    Article  ADS  Google Scholar 

  22. Wassilijewa, A., Heat Conduction in Gaseous Mixtures, Physik. Z. 5, 1904, pp.737–742

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herman, C. (2003). Thermoacoustic Refrigeration: Low-Temperature Applications and Optimization. In: Kakaç, S., Smirnov, H.F., Avelino, M.R. (eds) Low Temperature and Cryogenic Refrigeration. NATO Science Series, vol 99. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0099-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0099-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1274-7

  • Online ISBN: 978-94-010-0099-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics