Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 40))

Abstract

These lectures are intended as an introduction to soliton physics. In Section 1, I indicate in a simple way some of the mathematics underlying our present understanding of soliton theory. In Section 2, I summarize some current applications of this to nonlinear physics. The range of these applications is already vast: I cannot hope to survey them all, and in Section 3, I mention a number of areas where solitons plainly have significance—for example, where they can actually be observed—and then select four of these for more detailed study. In Section 4, I look at the problem of quantization and two possible applications.

Lectures given at NATO Advanced Study Institute on Nonlinear Equations in Physics and Mathematics, Istanbul, August 1977.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Korteweg and G. deVries, Phil. Mag. 39, 422 (1895).

    Google Scholar 

  2. J. Rubinstein, J. Math. Phys. 11, 258 (1970).

    Article  Google Scholar 

  3. R. K. Bullough, Solitons, in Interaction of Radiation with Condensed Matter, Vol. 1, IAEA-SMR-20/51, International Atomic Energy Agency, Vienna, 1977, pages 381–469.

    Google Scholar 

  4. A. Barone, F. Esposito, C. J. Magee, and A. C. Scott, Rivista del Nuovo Cimento 1, 111 (1971).

    Article  Google Scholar 

  5. A. Luther, Phys. Rev. B 14, 2153 (1976).

    Google Scholar 

  6. A. Degasperis, these Proceedings.

    Google Scholar 

  7. G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974, Chapter 4.

    MATH  Google Scholar 

  8. M. D. Kruskal, these Proceedings.

    Google Scholar 

  9. R. Jackiw, Rev. Mod. Phys. 49, 681 (1977).

    Article  MathSciNet  Google Scholar 

  10. S. Coleman, these Proceedings. E. Corrigan and D. B. Fairlie, Phys. Lett. B 67, 69 (1977) establish a connection between a c/4 Ď•-four theory and an SU2 Yang-Mills instanton.

    Google Scholar 

  11. H. Haken, Synergetics, in Phys. Bulletin, September 1977, page 413.

    Google Scholar 

  12. No finite temperature phase transition occurs in one dimension—a result due to Landau.

    Google Scholar 

  13. T. Schneider and E. Stoll, Phys. Rev. Lett. 35, 296 (1975). Also see T. Schneider, these Proceedings.

    Article  Google Scholar 

  14. J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B 11, 3535 (1975).

    Google Scholar 

  15. R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4130 (1974).

    Google Scholar 

  16. S. Coleman, Classical Lumps and Their Quantum Descendants, in Lectures at the 1975 International School of Sub-nuclear Physics, Ettore Majorana, 1975.

    Google Scholar 

  17. Like all such sweeping remarks, this one may need qualification. See V. E. Zakharov, The Inverse Scattering Method, in Solitons, R. K. Bullough and P. J. Caudrey (eds.), Springer Topics in Modern Physics, Springer-Verlag, Heidelberg, 1978, to appear.

    Google Scholar 

  18. R. Hirota, J. Phys. Soc. Japan 33, 1459 (1972); P. J. Caudrey, J. D. Gibbon, J. C. Eilbeck, and R. K. Bullough, Phys. Rev. Lett. 30, 237 (1973); P. J. Caudrey, J. C. Eilbeck and J. D. Gibbon, J. Inst. Maths. Applics. 14, 375 (1974)

    Google Scholar 

  19. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. 31, 125 (1973); V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) (Sov. Phys. T.E.T.P. 34, 62 (1972)). M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. 30, 1262 (1973); M. J. Ablowitz, D. I. Kaup, A. C. Newell, and H. Segur, Studies in Applied Math. 53, 249 (1974).

    Article  MathSciNet  Google Scholar 

  20. J. D. Gibbon, P. J. Caudrey, R. K. Bullough, and J. C. Eilbeck, Lett. al Nuovo Cimento 8, 775 (1973).

    Article  Google Scholar 

  21. V. E. Zakharov and L. D. Fadeev, Funkt. Anal, i Ego Prilozh. 5, 18 (1971); H. Flaschka and A. C. Newell, Integrable Systems of Nonlinear Evolution Equations, in Dynamical Systems. Theory and Applications, J. Moser (ed.), Springer Notes in Physics, Springer-Verlag, Heidelberg, 1975; R. K. Dodd and R. K. Bullough, The Generalised Marchenko Equation and the Canonical Structure of the AKNS-ZS Method. To appear.

    Google Scholar 

  22. R. K. Dodd and R. K. Bullough, Proc. Roy. Soc. A352, 481 (1977).

    Article  MathSciNet  Google Scholar 

  23. Alternatively the set (1. 17) is found by expanding log a(ζ) about infinity; the set (1. 18) is found by expanding about ζ = 0. The quantity a(ζ) is the reciprocal of the transmission coefficient associated with the continuous part of the spectrum in the inverse scattering method. See, e.g., Reference 24 and Section 4 below.

    Google Scholar 

  24. R. K. Bullough and R. K. Dodd, Solitons II. Mathematical Structures, in Synergetics, H. Haken (ed.), Springer-Verlag, Heidelberg, 1977, pages 104–119.

    Google Scholar 

  25. K. Pohlmeyer, Commun. Math. Phys. 46, 207 (1976); F. Lund, Phys. Rev. Lett. 38, 1175 (1977) and these Proceedings; A. Budazov and L. Tachtadjan, Dokl. Akad. Nauk. SSR, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. K. Dodd and R. K. Bullough, Proc. Roy. Soc. London A 351, 499 (1976).

    MathSciNet  Google Scholar 

  27. H. D. Wahlquist and F. B. Estabrook, Phys. Rev. Lett. 31, 1386 (1973); H. Chen, Phys. Rev. Lett. 33, 925 (1974).

    Article  MathSciNet  Google Scholar 

  28. P. D. Lax, Commun. Pure Appl. Math. 21, 467 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  29. P.J. Caudrey, J. C. Eilbeck, and J. D. Gibbon, J. Inst. Maths. Applics. 14, 375 (1974); R. Hirota, Direct Methods in Soliton Theory, in Solitons, R. K. Bullough and P. J. Caudrey (eds.), Springer Topics in Modern Physics, Springer-Verlag, Heidelberg, 1978. To appear.

    Article  MathSciNet  Google Scholar 

  30. P. J. Caudrey, these Proceedings.

    Google Scholar 

  31. E. Fermi, J. R. Pasta, and S. M. Ulam, Studies of Nonlinear Problems, I, Los Alamos Rept. LA-1940, May 1955, and Collected Works of E. Fermi, Vol. II, Univ. of Chicago Press, 1965, pages 978–88.

    Google Scholar 

  32. V. E. Zakharov and A. B. Shabat, Funkt. Anal, i Ego Prilozh. 8, 43 (1974).

    Google Scholar 

  33. J. Gibbons, S. G. Thornhill, M. J. Wardrop, and D. ter Haar, On the Theory of Langmuir Solitons, preprint Univ. of Oxford, Department of Theoretical Physics, Ref. 36 /76 (1976).

    Google Scholar 

  34. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) (Soviet Physics J.E.T.P. 35, 908 (1972).

    Google Scholar 

  35. H. Hasimoto, J. Fluid Mech. 51, 477 (1972).

    Article  MATH  Google Scholar 

  36. M. Lakshamanan, Phys. Lett., preprint 1977. L. A. Taktadjan, communicated at the Warsaw Solitons Meeting, September 1977.

    Google Scholar 

  37. G. L. Lamb, Rev. Mod. Phys. 43, 99 (1971).

    Article  MathSciNet  Google Scholar 

  38. J. C. Eilbeck, P. J. Caudrey, J. D. Gibbon, and R. K. Bullough, J. Phys. A: Math. Nucl. Gen. 6, 1337 (1973).

    Article  Google Scholar 

  39. B. B. Kadomtsev and V. I. Petviashvili, Dokl, Akad. Nauk. SSR, 192, 753 (1970).

    Google Scholar 

  40. H. C. Yuen and S. M. Lake, Phys. Fluids 18, 956 (1975).

    Article  MATH  Google Scholar 

  41. J. D. Gibbon, P. J. Caudrey, R. K. Bullough, and J. C. Eilbeck, Lett. al Nuovo Cimento 8, 775 (1973).

    Article  Google Scholar 

  42. H. M. Gibbs and R. E. Slusher, Phys. Rev. A 6, 2326 (1972).

    Article  Google Scholar 

  43. T. A. Fulton and R. C. Dynes, Solid State Comm. 12, 57 (1973).

    Article  Google Scholar 

  44. S. P. Novikov, Funkt. Anal. i. Ego Prilozh. 8, 54 (1974).

    Article  Google Scholar 

  45. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Article  Google Scholar 

  46. M. Cross, dissertation, Corpus Christi College, Cambridge, 1974.

    Google Scholar 

  47. A. J. Leggett, Ann. Phys. 85, 11 (1974).

    Article  Google Scholar 

  48. W. F. Brinkman, J. W. Serens, and P. W. Anderson, Phys. Rev. A 10, 2386 (1974).

    Article  Google Scholar 

  49. S. Duckworth, R. K. Bullough, P. J. Caudrey, and J. D. Gibbon, Phys. Lett. 57 A, 19 (1976).

    Article  Google Scholar 

  50. H. Kleinert, these Proceedings.

    Google Scholar 

  51. K. Maki and T. Tsuneto, Phys. Rev. B 11; 2539 (1975).

    Article  Google Scholar 

  52. R. K. Bullough and P. J. Caudrey, Bumping Spin Waves in the B-phase of Liquid 3He, in J. Phys. C: Solid State Physics. To appear in 1978. For the double s-G in the B-phase, see also work by K. Maki and P. Kumar cited there.

    Google Scholar 

  53. R. K. Bullough and P. J. Caudrey, Proc. Symposium on Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform, Rome, June 1977. Proceedings, F. Calogero (ed.), to be published by Pitman in 1978.

    Google Scholar 

  54. R. K. Bullough and P. J. Caudrey, Optical Solitons and Their Spin Wave Analogues in 3He, in Proc. Fourth Rochester Conference on Coherence and Quantum Optics, L. Mandel and E. Wolf (eds.), Plenum, New York. To be published in 1978.

    Google Scholar 

  55. R. K. Bullough, P. J. Caudrey, J. D. Gibbon, S. Duckworth, H. M. Gibbs, B. Bölger, and L. Baede, Optics Commun. 18, 200 (1976).

    Article  Google Scholar 

  56. A. C. Newell, J. Math. Phys. 18, 922 (1977).

    Article  MATH  Google Scholar 

  57. A. L. Mason, these Proceedings.

    Google Scholar 

  58. P. B. Burt, Exact, Multiple Soliton Solutions of the Double Sine-Gordon Equation, preprint 1977 and these Proceedings.

    Google Scholar 

  59. L. A. Taktadjan and L. D. Fadeev, Teor. Mat. Fiz. 21, 160 (1974).

    Google Scholar 

  60. V. E. Korepin and L. D. Fadeev, Teor. Mat. Fiz. 25, 47 (1975).

    Google Scholar 

  61. R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D11, 3424 (1975).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Bullough, R.K. (1978). Solitons in Physics. In: Barut, A.O. (eds) Nonlinear Equations in Physics and Mathematics. NATO Advanced Study Institutes Series, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9891-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9891-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9893-3

  • Online ISBN: 978-94-009-9891-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics