Skip to main content

The Role of Electrotonus in Cardiac Electrophysiology

  • Chapter
Frontiers of Cardiac Electrophysiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 19))

  • 127 Accesses

Abstract

When a voltage pulse is applied to a pair of electrodes placed on the surface of excitable tissues, the resulting current is not restricted to the interelectrodal region. Some of it can be detected at considerable distances surrounding the electrodes during and following the application of the pulse. This behavior of current applied to living tissue was first described in the middle of the 19th century by Du Bois-Reymond (1879), who labelled the phenomenon electrotonus. Some years later it was shown that electrotonus was not an exclusive property of living tissue. Herman (1858) used a wire immersed in a conducting solution enclosed by a glass tube, which was fitted with small side arms that permitted the location of polarizing and recording electrodes. Herman showed that something similar to electrotonus occurred in his physical model, and arrived at the correct interpretation of his results, i.e., that the polarization resistance between wire and fluid was the cause of the current spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Antzelevitch C, Jalife J, Moe GK: Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation 61: 182, 1980.

    PubMed  CAS  Google Scholar 

  • Barr L, Dewey MM, Berger W: Propagation of action potentials and the structure of the nexus in cardiac muscle. J Gen Physiol 48: 797–823, 1965.

    Article  PubMed  CAS  Google Scholar 

  • Bonke FIM: Electrotonic spread in the sinoatrial node of the rabbit heart. Pfluegers Arch 339: 17–23, 1973a.

    Article  CAS  Google Scholar 

  • Bonke FIM: Passive electrical properties of atrial fibers of the rabbit heart. Pfluegers Arch 339: 1–15, 1973b.

    Article  CAS  Google Scholar 

  • Cole KS, Curtis HJ: Electric impedance of the squid giant axon during activity. J Gen Physiol 22: 649–670, 1939.

    Article  PubMed  CAS  Google Scholar 

  • De Mello WC: Passive electrical properties of the atrioventricular node. Pfluegers Arch 371: 135–139, 1977.

    Article  Google Scholar 

  • Du Bois-Reymond (1948). Cited by Taylor RE. In: Physical Techniques in Biological Research. Vol. VI, Nastuk WL, ed. Academic Press, New York, 1963, p 222.

    Google Scholar 

  • Fozzard HA: Membrane capacity of the cardiac Purkinje fibre. J Physiol 182: 255–267, 1966.

    PubMed  CAS  Google Scholar 

  • Hellam DC, Studt JW: A core-conductor model of the cardiac Purkinje fibre based on structural analysis. J Physiol 243: 637–660, 1970.

    Google Scholar 

  • Herman (1879): Cited by Taylor RE. In: Physical Techniques in Biological Research. Vol. VI Nastuk WL, ed. Academic Press, New York, 1963, p 223.

    Google Scholar 

  • Hodgkin AL: Evidence for electrical transmission in nerve I and II. J Physiol 90: 183–211, 1937.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL: The relation between conduction velocity and the electrical resistance outside a nerve. J. Physiol 94: 560, 1939.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Rushton WAH: The electrical constants of a crustacean nerve fibre. Proc R Soc B 133: 444–479, 1946.

    Article  Google Scholar 

  • Jack JJB, Noble D, Tsien RW: Electrical current flow in excitable cells. Jack JJB, Noble D, Tsien RW, eds. Oxford Press, Oxford, 1975.

    Google Scholar 

  • Jalife J, Moe GK: Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole. Circ Res 39: 801–808, 1976.

    PubMed  CAS  Google Scholar 

  • Kamiyama A, Matsuda K: Electrophysiological properties of the canine ventricular fiber. Jpn J Physiol 16: 407–420, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Kamiyama A, Hoshi T: In: Electrophysiology and Ultrastructure of the Heart. Grune and Stratton, New York, 1967.

    Google Scholar 

  • McNutt NS, Weinstein RS: Membrane ultrastructure at mammalian intercellular junctions. Prog Biophys Mol Biol 26: 45–101, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Méndez C: Conduction block and action potential configuration in Purkinje fibers and ventricular muscle fibers. Fed Proc (abstract) 29: 587, 1970.

    Google Scholar 

  • Méndez C: Electrotonic interactions and action potential configuration in ventricular tissues. Proc Int U Physiol Sci (abstract) 12: 321, 1977.

    Google Scholar 

  • Méndez, C, Martinez-Palomo A: ‘Syncytial’ nature of ventricular myocardium. Proc Int U Physiol Sci (abstract) 11: 27, 1974.

    Google Scholar 

  • Méndez C, Moe GK: Some characteristics of transmembrane potentials of AV nodal cells during propagation of premature beats. Circ Res 19: 993–1010, 1966.

    Google Scholar 

  • Méndez C, Mueller WJ, Merideth J, Moe GK: Interaction of transmembrane potentials in canine Purkinje fibers and at Purkinje fiber-muscle junctions. Circ Res 24: 361–372, 1969.

    PubMed  Google Scholar 

  • Méndez C, Mueller WJ, Urquiaga X: Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart. Circ Res 26: 135–150, 1970.

    PubMed  Google Scholar 

  • Méndez C, Mueller WJ, Urquiaga X: Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart. Circ Res 26:135–150, 1970.

    Google Scholar 

  • Moe Gk, Jalife J, Mueller WI, Moe B: A mathematical model of parasystole and its application to clinical arrhythmias. Circulation 56: 968–979, 1977.

    Google Scholar 

  • Noble D: Applications of the Hodgkin-Huxley equations to excitable tissues. Physiol Rev 46: 1–50, 1966.

    PubMed  CAS  Google Scholar 

  • Sakamoto Y: Membrane characteristics of the canine papillary muscle fiber. J Gen Physiol 54: 765–781, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Sawanobori T: Abnormal automaticity in canine Purkinje fibers focally subjected to low external concentrations of calcium. Circ Res 31: 158–164, 1972.

    PubMed  CAS  Google Scholar 

  • Sasyniuk BI, Mendez C: A mechanism for reentry in canine ventricular tissue. Circ Res 28: 3–15, 1971.

    Google Scholar 

  • Sjöstrand FS, Andersson E: Electron microscopy of the intercalated disks of cardiac muscle tissue. Experientia, 10: 369–370, 1954.

    Article  PubMed  CAS  Google Scholar 

  • Sommer JR, Johnson EA: Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol 36: 497–526, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka I, Sasaki Y: On the electrotonic spread in cardiac muscle of the mouse. J Gen Physiol 49: 1089–1110, 1966.

    PubMed  CAS  Google Scholar 

  • Tarr M, Sperelakis N: Weak electrotonic interaction between contiguous cardiac cells. Am J Physiol 207: 691–700, 1964.

    PubMed  CAS  Google Scholar 

  • Tasaki I, Hagiwara S: Capacity of muscle fiber membrane. Am J Physiol 188: 423–429, 1957.

    PubMed  CAS  Google Scholar 

  • Tille J: Electrotonic interaction between muscle fibers in the rabbit ventricle. J Gen Physiol 50: 189–202, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Ushiyama J, McBrooks C: Intracellular stimulation and recording from single cardiac cells. Am J Cardiol 10: 688, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Van der Kloot WG, Dane B: Conduction of the action potential in frog ventricle. Science, N.Y., 146: 74–75, 1964.

    Article  Google Scholar 

  • Weidmann S: Effect of current flow on the membrane potential of cardiac muscle. J Physiol 115: 227–236, 1951.

    PubMed  CAS  Google Scholar 

  • Weidmann S: The electrical constants of Purkinje fibres. J Physiol 118: 348–360, 1952.

    PubMed  CAS  Google Scholar 

  • Weidmann S: Electrical constants of trabecular muscle from mammalian heart. J Physiol 210: 1041–1054, 1970.

    PubMed  CAS  Google Scholar 

  • Woodbury JW, Crill WE: On the problem of impulse conduction in the atrium. In: Nervous Inhibition, Florey E, ed. Pergamon Press, Oxford, 1961, pp 124–135.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Méndez, C. (1983). The Role of Electrotonus in Cardiac Electrophysiology. In: Rosenbaum, M.B., Elizari, M.V. (eds) Frontiers of Cardiac Electrophysiology. Developments in Cardiovascular Medicine, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6781-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6781-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6783-0

  • Online ISBN: 978-94-009-6781-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics