Abstract
The primary aim of many electrophysiological studies of single cells of the visual system has been the delineation of neurons subserving any one area of visual space with common functional properties. Such classifications are important because they provide a sensible way to functionally reduce to a manageable proportion the number of input and output signals from one region to another. The primate optic nerve, for example, contains some 106 ganglion cell axons which, at any given time, may be active or quiescent. If each ganglion cell were to have properties very different from those of the others, physiological studies would face a hopeless task, as the number of possible combinations of retinal output signals to the more central visual brain is enormous, on the order of 10300,000. Functional classifications are also useful because, depending on their underlying biases and criteria, they allow for (i) the recognition of corresponding neuronal groups at different levels of the system within and across species, and (ii) the formulation of testable inferences and deductions on the visual role(s) of the neurons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andersen, V. O., Guld, C. and Sjo, O. Colour processing in prestriate cortex of vervet monkey. In. Colour Vision (Mollon, J. D. and Sharpe, L. T., eds.). Academic Press, London (in press, 1983).
Baizer, J. S., Robinson, D. L. and Dow, B. M. Visual responses of area 18 neurons in the awake behaving monkey. J. Neurophysiol. 40: 1024–1037 (1977).
Baker, F. H. and Fischer, B. Responses of single cells in prelunate cortex of behaving rhesus monkey. J. Physiol. (London) 284: 118P (1978).
Bertulis, A., Guld, C. and Lennox-Buchthal, M. A. Spectral and orientation specificity of single cells in foveal striate cortex of the vervet monkey,Cercopithecus aethiops. J. Physiol. (London) 268: 1–20 (1977).
Bowmaker, J. K. and Dartnall, H. J. A. Visual pigments of rods and cones in a human retina. J. Physiol. (London). 298: 501 –512 (1980).
Bowmaker, J. K., Dartnall, H. J. A. and Mollon, J. D. Microspectrophotometric demonstration of four classes of photoreceptors in an Old World primate, Macaca fascicularis. J. Physiol. (London) 298: 131–143 (1980).
Boynton, R. M. and Whitten, D. N. Selective chromatic adaptation in primate photoreceptors. Vision Res. 12: 855 –874 (1972).
DeValois, R. L. Analysis and coding of color vision in the primate visual system. Cold Spring Harb. Symp. Quant. Biol. 30: 567 –579 (1965).
DeValois, R. L. Central mechanisms of color vision. In: Handbook of Sensory Physiology, Vol. VII/3 ( Jung, R., ed.). Springer-Verlag, Berlin (1973).
DeValois, R. L. and DeValois, K. K. Neural coding of color. In: Handbook of Perception, Vol. V: Seeing ( Carterette, E. C. and Friedman, M. P., eds.). Academic Press, New York (1975).
Dow, B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J. Neurophysiol. 37: 927 –946 (1974).
Dow, B. M. and Gouras, P. Color and spatial specificity of single units in rhesus monkey foveal striate cortex. J. Neurophysiol. 36: 79 –100 (1973).
Dow, B., Bauer, R. and Vautin, R. Extrastriate color cells in the awake monkey. Neurosci. Abstr. 5: 782 (1979).
Dreher, B., Fukada, Y. and Rodieck, R. W. Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. J. Physiol. (London) 258: 433 –452 (1976).
Fischer, B., Bosch, R. and Bach, M. Stimulus versus eye movements: comparison of neural activity in the striate and prelunate cortex (A 17 and A19) of trained rhesus monkey. Exp. Brain Res. 43: 69 –77 (1981).
Gouras, P. Identification of cone mechanisms in monkey ganglion cells. J. Physiol. (London) 199: 533 –547 (1968).
Gouras, P. Antidromic responses of orthodromically identified ganglion cells. J. Physiol. (London) 204: 407–419 (1969).
Gouras, P. Trichromatic mechanisms in single cortical neurons. Science 168: 489 –492 (1970).
Gouras, P. Opponent-color cells in different layers of foveal striate cortex. J. Physiol. (London) 238: 583 –602 (1974).
Gouras, P. and Zrenner, E. Enhancement of luminance flicker by color-opponent mechanisms. Science 205: 589 –589 (1979).
Graham, C. H. Vision: III. Some neural correlations. In: Handbook of General Experimental Psychology, Part II: Receptive Processes (Murchison, C., ed.), p. 861. Clark University Press, New York (1934).
Hubel, D. H. and Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (London) 195: 215 –243 (1968).
Hurvich, L. M. and Jameson, D. An opponent-process theory of color vision. Psychol. Rev. 64: 602 –616 (1957).
Krüger, J. and Gouras, P. Spectral selectivity of cells and its dependence on slit length in monkey visual cortex. J. Neurophysiol. 43: 1055 –1070 (1980).
Krüger, J. and Gouras, P. Spectral selectivity of cells and its dependence on slit length in monkey visual cortex. J. Neurophysiol. 43: 1055 –1070 (1980).
Land, E. H. The retinex theory of color vision. Scient. Am. 237: 108 –128 (1977).
Malpeli, J. G. and Schiller, P. H. Lack of blue off-center cells in the visual system of the monkey. Brain Res. 141: 385 –389 (1978).
Marks, W. B., Dobelle, W. H. and MacNichol, E. F., Jr. Visual pigments of single primate cones. Science 143: 1181 –1183 (1964).
Marrocco, R. T. Sustained and transient cells in monkey lateral geniculate nucleus: Conduction 11072000velocities and response properties. J. Neurophysiol. 40: 840 –853 (1976).
Marrocco, R. T. and Li, R. H. Moneky superior colliculus: properties of single cells and their afferent inputs. J. Neurophysiol. 40: 844 –860 (1977).
Marrocco, R. T., McClurkin, J. W. and Young, R. A. Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. J. Neurosci. 9: 1275–1291 (1982).
Mayr,E. Populations, Species and Evolution. Harvard University Press, Cambridge (1970).
Michael, C. R. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41: 572 –588 (1978a).
Michael, C. R. Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. J. Neurophysiol. 41: 1233 –1249 (1978b).
Michael, C. R. Color-sensitive complex cells in monkey striate cortex. J. Neurophysiol. 41: 1250 –1266 (1978c).
Michael, C. R. Color-sensitive hypercomplex cells in monkey striate cortex. J. Neurophysiol. 42: 726 –744 (1979).
Michael, C. R. Columnar organization of color cells in monkey’s striate cortex. J. Neurophysiol. 46: 587 –604 (1981).
Mollon. J. D. Color vision. Ann. Rev. Psychol. 33: 41 –85 (1982).
de Monasterio, F. M. Properties of concentrically organized X and Y ganglion cells of macaque retina. J. Neurophysiol. 41: 1394 –1417 (1978a).
de Monasterio, F. M. Center and surround mechanisms of opponent-color X and Y ganglion cells of the retina of macaques. J. Neurophysiol. 41: 1418 –1434 (1978b).
de Monasterio, F. M. Properties of ganglion cells with atypical receptive-field organization in the retina of macaques. J. Neurophysiol. 41: 1435 –1449 (1978c).
de Monasterio, F. M. Signals from blue cones in ‘red-green ’opponent-color ganglion cells of the macaque retina. Vision Res. 19: 441–449 (1979a).
de Monasterio, F. M. Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques. Brain Res. 166: 39–48 (1979b).
de Monasterio, F. M. A dual role for ‘yellow-center, blue-surround’ cells in macaque retina. Invest. Ophthalmol. Vis. Sci. 24 (Suppl.): 264 (1983).
de Monasterio, F. M. and Gouras, P. Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (London) 251: 167–195 (1975).
de Monasterio, F. M., Gouras, P. and Tolhurst, D. J. Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. (London) 251: 197–216 (1975a).
de Monasterio, F. M., Gouras, P. and Tolhurst, D. J. Concealed colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. (London) 251: 217–229 (1975b).
de Monasterio, F. M. and Schein, S. J. Protan-like spectral sensitivity of foveal Y ganglion cells of macaque retina. J. Physiol. (London) 299: 385–396 (1980).
de Monasterio, F. M. and Schein, S. J. Spectral bandwidths of color-opponent cells of geniculo-cortical pathway of macaque monkeys. J. Neurophysiol. 47: 214–224 (1982).
Motokawa, K., Taira, N. and Okuda, J. Spectral responses in the primate visual cortex. Tohoku J. Exp. Med. 78: 320–327 (1962).
Naka, K.-I. and Rushton, W. A. H. S-potentials from colour units in the retina of fish (Cyprinidae). J. Physiol. (London) 185: 536–555 (1966).
Padmos, P. and van Norren, D. Cone systems interaction in single neurons of the lateral geniculate nucleus of the macaque. Vision Res. 15: 617–619 (1975).
Poggio, G. F., Baker, F. H., Mansfield, R. J. W. Sillito, A. and Grigg, P. Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkeys. Brain Res. 100: 25–59 (1975).
Polden, P. G. and Mollon, J. D. Reversed effect of adapting stimuli on visual sensitivity. Proc. R. Soc. London Ser. B 210: 235–272 (1980).
Schein, S. J., Desimone, R. and de Monasterio, F. M. Spectral properties of area V4 cells of macaque monkey. Invest. Ophthalmol. Vis. Sci. 24 (Suppl.): 107 (1983).
Schein, S. M., Marrocco, R. T. and de Monasterio, F. M. Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? J. Neurophysiol. 47: 193–213 (1982).
Schiller, P. H. and Malpeli, J. G. Properties and tectal projections of monkey retinal ganglion cells. J. Neurophysiol. 40: 428–445 (1977).
Sperling, H. G. and Harwerth, R. S. Red-green interactions in the increment-threshold spectral sensitivity of primates. Science 172: 180–184 (1971).
Stiles, W. S. The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc. R. Soc. London Ser. B 127: 64–05 (1939).
Stiles, W. S. Mechanisms of Colour vision. Selected papers of W. S. Stiles, F. R. S., with a new introductory essay. Academic Press, London (1978).
Thornton, J. E. and Pugh, E. N., Jr. Red-green color opponency and detection threshold. Science 219: 191–193 (1983).
Wald, G. The receptors of human color vision. Science 145: 1007–1016 (1964).
Wiesel, T. N. and Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29: 1115–1156 (1966).
Yates, T. Chromatic information processing in the foveal projection (area striata) of unanesthetized primate. Vision Res. 14: 163–173 (1974).
Zeki, S. M. Colour coding in rhesus monkey prestriate cortex. Brain Res. 53: 422–427 (1973).
Zeki, S. M. Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc. R. Soc. London Ser. B 197: 195–223 (1977).
Zeki, S. M. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J. Physiol. (London) 277: 273–290 (1978).
Zeki, S. M. The representations of colours in the cerebral cortex. Nature (London) 284: 412–418 (1980).
Zeki, S. M. The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc. R. Soc. London Ser. B 217: 449–470 (1983).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1984 Dr W. Junk Publishers The Hague, Boston, Lancaster
About this paper
Cite this paper
de Monasterio, F.M. (1984). Electrophysiology of Color Vision. In: Verriest, G. (eds) Colour Vision Deficiencies VII. Documenta Ophthalmologica Proceedings Series, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6551-5_3
Download citation
DOI: https://doi.org/10.1007/978-94-009-6551-5_3
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-009-6553-9
Online ISBN: 978-94-009-6551-5
eBook Packages: Springer Book Archive