Skip to main content

Electrophysiology of Color Vision

I. Cellular level

  • Conference paper
Colour Vision Deficiencies VII

Part of the book series: Documenta Ophthalmologica Proceedings Series ((DOPS,volume 39))

Abstract

The primary aim of many electrophysiological studies of single cells of the visual system has been the delineation of neurons subserving any one area of visual space with common functional properties. Such classifications are important because they provide a sensible way to functionally reduce to a manageable proportion the number of input and output signals from one region to another. The primate optic nerve, for example, contains some 106 ganglion cell axons which, at any given time, may be active or quiescent. If each ganglion cell were to have properties very different from those of the others, physiological studies would face a hopeless task, as the number of possible combinations of retinal output signals to the more central visual brain is enormous, on the order of 10300,000. Functional classifications are also useful because, depending on their underlying biases and criteria, they allow for (i) the recognition of corresponding neuronal groups at different levels of the system within and across species, and (ii) the formulation of testable inferences and deductions on the visual role(s) of the neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen, V. O., Guld, C. and Sjo, O. Colour processing in prestriate cortex of vervet monkey. In. Colour Vision (Mollon, J. D. and Sharpe, L. T., eds.). Academic Press, London (in press, 1983).

    Google Scholar 

  • Baizer, J. S., Robinson, D. L. and Dow, B. M. Visual responses of area 18 neurons in the awake behaving monkey. J. Neurophysiol. 40: 1024–1037 (1977).

    PubMed  CAS  Google Scholar 

  • Baker, F. H. and Fischer, B. Responses of single cells in prelunate cortex of behaving rhesus monkey. J. Physiol. (London) 284: 118P (1978).

    CAS  Google Scholar 

  • Bertulis, A., Guld, C. and Lennox-Buchthal, M. A. Spectral and orientation specificity of single cells in foveal striate cortex of the vervet monkey,Cercopithecus aethiops. J. Physiol. (London) 268: 1–20 (1977).

    CAS  Google Scholar 

  • Bowmaker, J. K. and Dartnall, H. J. A. Visual pigments of rods and cones in a human retina. J. Physiol. (London). 298: 501 –512 (1980).

    CAS  Google Scholar 

  • Bowmaker, J. K., Dartnall, H. J. A. and Mollon, J. D. Microspectrophotometric demonstration of four classes of photoreceptors in an Old World primate, Macaca fascicularis. J. Physiol. (London) 298: 131–143 (1980).

    CAS  Google Scholar 

  • Boynton, R. M. and Whitten, D. N. Selective chromatic adaptation in primate photoreceptors. Vision Res. 12: 855 –874 (1972).

    Article  PubMed  CAS  Google Scholar 

  • DeValois, R. L. Analysis and coding of color vision in the primate visual system. Cold Spring Harb. Symp. Quant. Biol. 30: 567 –579 (1965).

    CAS  Google Scholar 

  • DeValois, R. L. Central mechanisms of color vision. In: Handbook of Sensory Physiology, Vol. VII/3 ( Jung, R., ed.). Springer-Verlag, Berlin (1973).

    Google Scholar 

  • DeValois, R. L. and DeValois, K. K. Neural coding of color. In: Handbook of Perception, Vol. V: Seeing ( Carterette, E. C. and Friedman, M. P., eds.). Academic Press, New York (1975).

    Google Scholar 

  • Dow, B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J. Neurophysiol. 37: 927 –946 (1974).

    PubMed  CAS  Google Scholar 

  • Dow, B. M. and Gouras, P. Color and spatial specificity of single units in rhesus monkey foveal striate cortex. J. Neurophysiol. 36: 79 –100 (1973).

    PubMed  CAS  Google Scholar 

  • Dow, B., Bauer, R. and Vautin, R. Extrastriate color cells in the awake monkey. Neurosci. Abstr. 5: 782 (1979).

    Google Scholar 

  • Dreher, B., Fukada, Y. and Rodieck, R. W. Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. J. Physiol. (London) 258: 433 –452 (1976).

    CAS  Google Scholar 

  • Fischer, B., Bosch, R. and Bach, M. Stimulus versus eye movements: comparison of neural activity in the striate and prelunate cortex (A 17 and A19) of trained rhesus monkey. Exp. Brain Res. 43: 69 –77 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Gouras, P. Identification of cone mechanisms in monkey ganglion cells. J. Physiol. (London) 199: 533 –547 (1968).

    CAS  Google Scholar 

  • Gouras, P. Antidromic responses of orthodromically identified ganglion cells. J. Physiol. (London) 204: 407–419 (1969).

    CAS  Google Scholar 

  • Gouras, P. Trichromatic mechanisms in single cortical neurons. Science 168: 489 –492 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Gouras, P. Opponent-color cells in different layers of foveal striate cortex. J. Physiol. (London) 238: 583 –602 (1974).

    Google Scholar 

  • Gouras, P. and Zrenner, E. Enhancement of luminance flicker by color-opponent mechanisms. Science 205: 589 –589 (1979).

    Article  Google Scholar 

  • Graham, C. H. Vision: III. Some neural correlations. In: Handbook of General Experimental Psychology, Part II: Receptive Processes (Murchison, C., ed.), p. 861. Clark University Press, New York (1934).

    Google Scholar 

  • Hubel, D. H. and Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (London) 195: 215 –243 (1968).

    CAS  Google Scholar 

  • Hurvich, L. M. and Jameson, D. An opponent-process theory of color vision. Psychol. Rev. 64: 602 –616 (1957).

    Article  Google Scholar 

  • Krüger, J. and Gouras, P. Spectral selectivity of cells and its dependence on slit length in monkey visual cortex. J. Neurophysiol. 43: 1055 –1070 (1980).

    PubMed  Google Scholar 

  • Krüger, J. and Gouras, P. Spectral selectivity of cells and its dependence on slit length in monkey visual cortex. J. Neurophysiol. 43: 1055 –1070 (1980).

    PubMed  Google Scholar 

  • Land, E. H. The retinex theory of color vision. Scient. Am. 237: 108 –128 (1977).

    Article  CAS  Google Scholar 

  • Malpeli, J. G. and Schiller, P. H. Lack of blue off-center cells in the visual system of the monkey. Brain Res. 141: 385 –389 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Marks, W. B., Dobelle, W. H. and MacNichol, E. F., Jr. Visual pigments of single primate cones. Science 143: 1181 –1183 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Marrocco, R. T. Sustained and transient cells in monkey lateral geniculate nucleus: Conduction 11072000velocities and response properties. J. Neurophysiol. 40: 840 –853 (1976).

    Google Scholar 

  • Marrocco, R. T. and Li, R. H. Moneky superior colliculus: properties of single cells and their afferent inputs. J. Neurophysiol. 40: 844 –860 (1977).

    PubMed  CAS  Google Scholar 

  • Marrocco, R. T., McClurkin, J. W. and Young, R. A. Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. J. Neurosci. 9: 1275–1291 (1982).

    Google Scholar 

  • Mayr,E. Populations, Species and Evolution. Harvard University Press, Cambridge (1970).

    Google Scholar 

  • Michael, C. R. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41: 572 –588 (1978a).

    CAS  Google Scholar 

  • Michael, C. R. Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. J. Neurophysiol. 41: 1233 –1249 (1978b).

    CAS  Google Scholar 

  • Michael, C. R. Color-sensitive complex cells in monkey striate cortex. J. Neurophysiol. 41: 1250 –1266 (1978c).

    CAS  Google Scholar 

  • Michael, C. R. Color-sensitive hypercomplex cells in monkey striate cortex. J. Neurophysiol. 42: 726 –744 (1979).

    PubMed  CAS  Google Scholar 

  • Michael, C. R. Columnar organization of color cells in monkey’s striate cortex. J. Neurophysiol. 46: 587 –604 (1981).

    PubMed  CAS  Google Scholar 

  • Mollon. J. D. Color vision. Ann. Rev. Psychol. 33: 41 –85 (1982).

    Article  CAS  Google Scholar 

  • de Monasterio, F. M. Properties of concentrically organized X and Y ganglion cells of macaque retina. J. Neurophysiol. 41: 1394 –1417 (1978a).

    Google Scholar 

  • de Monasterio, F. M. Center and surround mechanisms of opponent-color X and Y ganglion cells of the retina of macaques. J. Neurophysiol. 41: 1418 –1434 (1978b).

    Google Scholar 

  • de Monasterio, F. M. Properties of ganglion cells with atypical receptive-field organization in the retina of macaques. J. Neurophysiol. 41: 1435 –1449 (1978c).

    Google Scholar 

  • de Monasterio, F. M. Signals from blue cones in ‘red-green ’opponent-color ganglion cells of the macaque retina. Vision Res. 19: 441–449 (1979a).

    Article  PubMed  Google Scholar 

  • de Monasterio, F. M. Asymmetry of on- and off-pathways of blue-sensitive cones of the retina of macaques. Brain Res. 166: 39–48 (1979b).

    Article  Google Scholar 

  • de Monasterio, F. M. A dual role for ‘yellow-center, blue-surround’ cells in macaque retina. Invest. Ophthalmol. Vis. Sci. 24 (Suppl.): 264 (1983).

    Google Scholar 

  • de Monasterio, F. M. and Gouras, P. Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (London) 251: 167–195 (1975).

    Google Scholar 

  • de Monasterio, F. M., Gouras, P. and Tolhurst, D. J. Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. (London) 251: 197–216 (1975a).

    Google Scholar 

  • de Monasterio, F. M., Gouras, P. and Tolhurst, D. J. Concealed colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. (London) 251: 217–229 (1975b).

    Google Scholar 

  • de Monasterio, F. M. and Schein, S. J. Protan-like spectral sensitivity of foveal Y ganglion cells of macaque retina. J. Physiol. (London) 299: 385–396 (1980).

    Google Scholar 

  • de Monasterio, F. M. and Schein, S. J. Spectral bandwidths of color-opponent cells of geniculo-cortical pathway of macaque monkeys. J. Neurophysiol. 47: 214–224 (1982).

    PubMed  Google Scholar 

  • Motokawa, K., Taira, N. and Okuda, J. Spectral responses in the primate visual cortex. Tohoku J. Exp. Med. 78: 320–327 (1962).

    Article  CAS  Google Scholar 

  • Naka, K.-I. and Rushton, W. A. H. S-potentials from colour units in the retina of fish (Cyprinidae). J. Physiol. (London) 185: 536–555 (1966).

    CAS  Google Scholar 

  • Padmos, P. and van Norren, D. Cone systems interaction in single neurons of the lateral geniculate nucleus of the macaque. Vision Res. 15: 617–619 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Poggio, G. F., Baker, F. H., Mansfield, R. J. W. Sillito, A. and Grigg, P. Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkeys. Brain Res. 100: 25–59 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Polden, P. G. and Mollon, J. D. Reversed effect of adapting stimuli on visual sensitivity. Proc. R. Soc. London Ser. B 210: 235–272 (1980).

    Article  CAS  Google Scholar 

  • Schein, S. J., Desimone, R. and de Monasterio, F. M. Spectral properties of area V4 cells of macaque monkey. Invest. Ophthalmol. Vis. Sci. 24 (Suppl.): 107 (1983).

    Google Scholar 

  • Schein, S. M., Marrocco, R. T. and de Monasterio, F. M. Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? J. Neurophysiol. 47: 193–213 (1982).

    PubMed  CAS  Google Scholar 

  • Schiller, P. H. and Malpeli, J. G. Properties and tectal projections of monkey retinal ganglion cells. J. Neurophysiol. 40: 428–445 (1977).

    PubMed  CAS  Google Scholar 

  • Sperling, H. G. and Harwerth, R. S. Red-green interactions in the increment-threshold spectral sensitivity of primates. Science 172: 180–184 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Stiles, W. S. The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc. R. Soc. London Ser. B 127: 64–05 (1939).

    Article  Google Scholar 

  • Stiles, W. S. Mechanisms of Colour vision. Selected papers of W. S. Stiles, F. R. S., with a new introductory essay. Academic Press, London (1978).

    Google Scholar 

  • Thornton, J. E. and Pugh, E. N., Jr. Red-green color opponency and detection threshold. Science 219: 191–193 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Wald, G. The receptors of human color vision. Science 145: 1007–1016 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T. N. and Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29: 1115–1156 (1966).

    PubMed  CAS  Google Scholar 

  • Yates, T. Chromatic information processing in the foveal projection (area striata) of unanesthetized primate. Vision Res. 14: 163–173 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. M. Colour coding in rhesus monkey prestriate cortex. Brain Res. 53: 422–427 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. M. Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc. R. Soc. London Ser. B 197: 195–223 (1977).

    Article  CAS  Google Scholar 

  • Zeki, S. M. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J. Physiol. (London) 277: 273–290 (1978).

    CAS  Google Scholar 

  • Zeki, S. M. The representations of colours in the cerebral cortex. Nature (London) 284: 412–418 (1980).

    Article  CAS  Google Scholar 

  • Zeki, S. M. The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc. R. Soc. London Ser. B 217: 449–470 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Verriest

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers The Hague, Boston, Lancaster

About this paper

Cite this paper

de Monasterio, F.M. (1984). Electrophysiology of Color Vision. In: Verriest, G. (eds) Colour Vision Deficiencies VII. Documenta Ophthalmologica Proceedings Series, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6551-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6551-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6553-9

  • Online ISBN: 978-94-009-6551-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics