Skip to main content

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 3))

Abstract

The biodegradation of plant, animal and microbial debris is a complex and multifacited process involving an enormous number and variety of soil organisms. For the purpose of this chapter, biodegradation is seen as involving two distinct yet inter-related phenomena: (1) the breakdown of organic debris and its macromolecular components by extracellular enzymes as a prelude to assimilation and mineralization of soluble low molecular weight products; and (2) the formation and fate of polyaromatic substances and polysaccharides (i.e. humus) arising during microbial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ander, P., and K-E. Eriksson. 1976. The importance of phenol oxidase activity in lignin degradation by the white-rot fungus Sporotrichumpulverulentum. Archiv. Microbiol. 109: 1 – 8.

    Article  CAS  Google Scholar 

  2. Ander, P., A. Hatakka, and K-E. Eriksson. 1980. Degradation of lignin-related substances bySporotrichum pulverulentum, pages 1–15,inT.K. Kirk, T. Higuchi and H-M. Chang, editors. Lignin biodegradation: microbiology, chemistry and potential applications, vol.II. CRC Press, Boca Raton, Florida.

    Google Scholar 

  3. Anderson, J.P.E., and K. H. Domsch. 1978. Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biol. Biochem. 10: 207 – 213.

    Article  CAS  Google Scholar 

  4. Aomine, S., and M.L. Jackson. 1959. Al lophane determination in Ando Soils by cation exchange capacity delta value. Soil Sci. Soc. Amer. Proc. 23: 210 - 214.

    Article  CAS  Google Scholar 

  5. Aspinall, G.O. 1980. Chemistry of cell wall polysaccharides pages 473-500,inJ. Preiss, editor. The biochemistry of plants, vol. 3. Academic Press, London.

    Google Scholar 

  6. Bartha, R. 1971. Fate of herbicide-derived chloroanilines in soil. J. Agr. Food Chem. 19: 385 – 387.

    Article  CAS  Google Scholar 

  7. Bartha, R. 1980. Pesticide residues in humus. ASM News 46: 356 – 360.

    Google Scholar 

  8. Bartha, R., and L. Bordeleau. 1969. Cell-free peroxidases in soil. Soil Biol. Biochem. 1: 139 – 143.

    Article  CAS  Google Scholar 

  9. Bartha, R., and D. Pramer. 1970. Metabolism of acylanilide herbicides. Adv. Appl. Mlcrabiol. 13: 317 – 341.

    Article  CAS  Google Scholar 

  10. Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis and taxonomy of fungi. Ann. Rev. Microbiol. 22: 87 – 108.

    Article  CAS  Google Scholar 

  11. Benzing-Purdie, L. 1981. Glucosamine and galactosamine distribution in soil as determined by gas liquid chromatography of soil hydrolysates: Effect of acid strength and cations. Soil Sci. Soc. Am. J. 45: 66 – 70.

    Article  CAS  Google Scholar 

  12. Bollag, J-M, S-Y. Liu, and R.P. Minard. 1980. Cross-coupling of phenolic humus constituents and 2,4-dichlorophenol. Soil Sci. Soc. Amer. J. 44: 52 – 56.

    Article  CAS  Google Scholar 

  13. Bollag, J-M., R.P. Sjoblad, and D.P. Minard. 1977. Polymerization of phenolic intermediates of pesticides by a fungal enzyme. Experientia 33: 1564–1566.

    Article  PubMed  CAS  Google Scholar 

  14. Bondietti, E., J.P. Martin, and K. Haider. 1972. Stabilization of amino sugar units in humic-type polymers. Soil Sci. Soc. Amer. Proc. 36: 597 – 602.

    Article  CAS  Google Scholar 

  15. Bremner, J. 1967. Nitrogenous compounds, pages 32–66,inA. D. McLaren and G. H. Peterson editors. Soil biochemistry. Marcel Dekker, New York.

    Google Scholar 

  16. Broadbent, F.E., and A. G. Norman. 1946. Some factors affecting the availability of the organic nitrogen in soil - a preliminary report. Soil Sci. Soc. Amer. Proc. 11: 264 – 267.

    Article  Google Scholar 

  17. Burges, N. A., H. M. Hurst and S. B. Walkden. 1964. The phenolic constituents of humic acid and their relation to lignin of the plant cover. Geochim. Cosmochim. Acta 28: 1547 – 1564.

    Article  CAS  Google Scholar 

  18. Burns, R. G. 1977. Soil enzymology. Sci. Prog. (Oxford) 64: 275 – 285.

    CAS  Google Scholar 

  19. Burns, R. G. 1978a. Enzymes in soil: some theoretical and practical considerations, pages 295–339,inR. G. Burns editor. Soil enzymes. Academic Press, London.

    Google Scholar 

  20. Burns, R. G. 1978b. Soil enzymes. Academic Press, London.

    Google Scholar 

  21. Burns, R.G. 1980. Microbial adhesion to soil surfaces consquences for growth and enzyme activities, pages 249–269,inR.C.W. Berkeley, J.M. Lynch, J. Melling, P. R. Rutter and B. Vincent editors. Microbial adhesion to surfaces. Ellis Horwood, Chichester.

    Google Scholar 

  22. Burns, R. G. 1982a. Carbon mineralization by mixed cultures, pages 473–541,inA.T. Bull and J.H. Slater, editors. Microbial interactions and communities. Academic Press, London.

    Google Scholar 

  23. Burns, R.G. 1982b. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol. Biochem. 14: 423 – 427.

    Article  CAS  Google Scholar 

  24. Burns, R. G. 1983. Extracellular enzyme-substrate interactions in soil, pages 249–298,inJ. H. Slater R. Whittenbury and J.W.T. Wimpenny,Microbes in their natural environment, 34th Symp. Soc. Gen. Microbiol. Cambridge University Press, Cambridge.

    Google Scholar 

  25. Cain, R.B. 1980. The uptake and catabolism of ligninrelated aromatic compounds and their regulation in microorganisms, pages 21–60inT.K. Kirk, T. Higuchi and H-M. Chang, editors. Lignin biodegradation microbiology, chemistry and potential applications. vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  26. Canevascini, G., and H. Meier. 1978. Cellulolytic enzymes of Sporotrichum thermophile. Abst.XII Int. Cong. Micro io., unic.

    Google Scholar 

  27. Chahal, D. S., M. Moo-Young, and G. S. Dhillon. 1979. Bioconversion of wheat straw and wheat straw components into single-cell protein. Can. J. Microbiol. 25: 793–797.

    Article  PubMed  CAS  Google Scholar 

  28. Cheshire, M. V. 1977. Origins and stability of soil polysaccharides. J. Soil Sci. 28: 1–10.

    Article  CAS  Google Scholar 

  29. Ciegler, A., S. Kadis, and S. J. Ajl. 1971. Microbial toxins vol. 6: Fungal toxins. Academic Press,New York.

    Google Scholar 

  30. Cohen, B.L. 1980. Transport and utilization of proteins by fungi, pages 411-430,inJ.W. Payne, editor. Microorganisms and nitrogen sources. John Wiley, Chichester.

    Google Scholar 

  31. Cowling, E. B., and W. Brown. 1979. Structural features of cellulosic materials in relation to enzymic hydrolysis. Adv. Chem. Ser. 95: 152 – 187.

    Article  Google Scholar 

  32. Crawford, R. L. 1981. Lignin biodegradation and transformation. John Wiley, New York.

    Google Scholar 

  33. Crawford, D. L., and R. L. Crawford. 1976. Microbial degradation of lignocellulose: the lignin component. Appl. Environ. Microbiol. 31: 714 – 717.

    PubMed  CAS  Google Scholar 

  34. Crawford, D.L., and J.B. Sutherland. 1979. The role of actinomycetes in the decomposition of lignocellulose. Dev. Ind. Microbiol. 20: 143 – 151.

    Google Scholar 

  35. Crawford, D. L., and J.B. Sutherland. 1980. Isolation and characterization of lignocellulose-decomposing actinomycetes, pages 95–125, in T.K. Kirk, T. Higuchi, and H-M. Chang, editors. Lignin biodegradation microbiology, chemistry and potential applications. vol. 11. CRC Press, Boca Raton, Florida.

    Google Scholar 

  36. Dagley, S. 1971. Catabolism of aromatic compounds by microorganisms. Adv. Microbiol. Physiol. 6: 1 – 46.

    Article  CAS  Google Scholar 

  37. Dagley, S. 1978. Microbial catabolism, the carbon cycle and environmental pollution. Naturwiss.65: 85 – 95.

    Google Scholar 

  38. Dalal, R. C. 1975. Urease activity in some Trinidad soils. Soil Biol. Biochem. 7: 5 – 8.

    Article  CAS  Google Scholar 

  39. Degens, E.D. 1982. Tracing man’s carbon dioxide. ICSU Newsletter 17: 4 – 5.

    Google Scholar 

  40. Deshpande, V., D-E.. Eriksson, and B. Pettersson. 1978. Production, purification and partial characterization of 1,4-S-glucosidase enzymes fromSporitrichum pulverulentum. Eur. J. Biochem. 90: 191 – 198.

    Article  PubMed  CAS  Google Scholar 

  41. Drew, S. W., and K. L. Kadam. 1979. Lignin metabolism byAspergillus fumigatusand a white-rot fungus. Dev. Ind. Microbiol. 20: 153 – 161.

    Google Scholar 

  42. Dudman, W. F. 1977. The role of surface polysaccharides in natural environments, pages 357–414,inI. W. Sutherland, editor. Surface carbohydrates of the prokaryotic cell. Academic Press, London.

    Google Scholar 

  43. Edwards, C.A., and J. P. Lofty. 1972. Biology of earthworms. Chapman and Hall, London.

    Google Scholar 

  44. Eriksson, K-E., and S.C. Johnsrud. 1982. Mineralisation of carbon, pages 134–153,inR.G. Burns and J.H. Slater, editors. Experimental microbial ecology. Blackwell Scientific. Publications, Oxford.

    Google Scholar 

  45. Fan, L. T., Y-H. Lee, and D. H. Beardmore. Mechanism of enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22:177–199.

    Google Scholar 

  46. Filip, Z. 1975. Wechselbeziehungen zwischen Mikroorganismen and Tonmineralen and ihre Auswirkung auf die Bodendynamik. Habilitationsschrift, Univ. Giessen.

    Google Scholar 

  47. Flaig, W. 1964. Chemische Untersuchungen an Humusstoffen. Chem. 4: 253 – 265.

    CAS  Google Scholar 

  48. Flaig, W., H. Beutelspacher, and E. Rietz. 1975. Chemical composition and physical properties of humic substances, pages 1–211,inJ.E. Gieseking, editor. Soil components, vol. 1. Organic components. Springer-Verlag, New York.

    Google Scholar 

  49. Foster, R. C. 1981. Polysaccharides in soil fabrics. Soil Sci. 214: 665 – 667.

    CAS  Google Scholar 

  50. Freudenberg, K., and A. C. Neish. 1968. Constitution and biosynthesis of lignin. Springer-Verlag, Berlin.

    Google Scholar 

  51. Gascho, G.F., and F.J. Stevenson. 1968. An improved method for extracting organic matter from soil. Soil Sci. Soc. Amer. Proc. 32: 117 – 118.

    Article  CAS  Google Scholar 

  52. Ghose, T.K., and P. Ghosh. 1979. Cellulase production and cellulose hydrolysis. Proc. Biochem.Nov: 20 – 24.

    Google Scholar 

  53. Goh, K. M., and F. J. Stevenson. 1971. Comparison of infra-red spectra of synthetic and natural humic and fulvic acids. Soil Sci. 112: 392 – 400.

    Article  CAS  Google Scholar 

  54. Goksoyr, J., and J. Eriksen. 1960. Cellulases, pages 283–330,in A.H. Rose, editor. Economic microbiology, vol. 5. Academic Press, London.

    Google Scholar 

  55. Gong, C-S., and G. T. Tsao. 1979. Cellulase and biosynthesis regulation. Ann. Rep. Ferm. Proc. 3: 111 – 140.

    CAS  Google Scholar 

  56. Gonzalez-Vila, F. J., H. Lentz, and H. D. Ludemann. 1976. C13 nuclear magnetic resonance spectra of natural humic substances. Biophys. Biochem. Res. Commun. 72: 1063 – 1070.

    Article  CAS  Google Scholar 

  57. Greenland, D. J. 1965. Interactions between clays and organic compounds in soils. Part 11. Adsorption of soil organic compounds and its effect on soil properties Soils Fert. 28: 415 – 425.

    Google Scholar 

  58. Greenland, D. J. 1971. Interactions between humic and fulvic acids and clays. Soil Sci. 111: 34 – 41.

    Article  CAS  Google Scholar 

  59. Greenland, D. J., G. R. Lindstrom, and J.P. Quirk. 1961. Role of polysaccharides in stabilization of natural soil aggregates. Nature (London)191: 1283 – 1284.

    Google Scholar 

  60. Greenland, D. J., and J. M. Oades. 197 = Saccharides pages 213–261,in J.E. Gieseking, editor. Soil components, vol. 1. Organic compounds. SpringerVerlag, New York.

    Google Scholar 

  61. Griffith, S.M., and M. Schnitzer. 1975. The isolation and characterization of stable metal-organic complexes from tropical volcanic soils. Soil Sci. 120: 126 – 127.

    Article  CAS  Google Scholar 

  62. Griffiths, E., and R.G. Burns. 1972. Interaction between phenolic substances and microbial polysaccharides in soil aggregation. Pl. Soil 36, 599 – 612.

    Article  CAS  Google Scholar 

  63. Guckert, A. 1975. Origine et devinir des polysaccharides du sol, pages 116–127,inG. Kilbertus, O. Reisinger, A. Mourey and J. A. Came la, editors. Proc. 1st. Sym. Biodegradation et Humification, Univ. of Nancy, Nancy, France.

    Google Scholar 

  64. Guckert, A., H.H. Tok, and F. Jacquin. 1977. Biodegradation de polysaccharides bacteriens adorbes sur une montmorillonite, pages 403–411,in Soil organic matter studies vol. 1. 1AEA-FAO Vienna.

    Google Scholar 

  65. Gupta, U. C., and F. J. Sowden. 1965. Studies on methods for the determination of sugars and uronic adids in soils. Can. J. Soil Sci. 45: 237 – 240.

    Article  CAS  Google Scholar 

  66. Hackett, W.F., W. J. Conners, K. Kirk, and J. G. Zeikus. 1977. Microbial decomposition of synthetic 14Clabelled lignins in nature: lignin biodegradation in a variety of natural materials. Appl. Environ. Microbiol. 33: 43 – 51.

    PubMed  CAS  Google Scholar 

  67. Haider, K., and J. P. Martin. 1967. Synthesis and transformation of phenolic compounds byEpicoccumnigrum in relation to soil humus formation. Soil Sci. Soc. Amer. Proc. 31: 766 – 772.

    Article  CAS  Google Scholar 

  68. Haider, K., and J. P. Martin. 1970. Humic acid-type phenolic polymers from Aspergillus s dowi culture medium,Stachybotrysspp. cells and autoxidized phenol mixture. Soil Biol. Biochem. 2: 145 – 156.

    CAS  Google Scholar 

  69. Haider, K., and J.P. Martin. 1975. Decomposition of specifically carbon-14-labelled benzoic and cinnamic acid derivatives in soil. Soil Sci. Soc. Amer. Proc. 39: 657 – 662.

    Article  CAS  Google Scholar 

  70. Hader, K., and J.P. Martin. 1979. Abbau and Umwandlung von Pflanzenruckstanden and ihren Inhaltsstoffen durch die Mikrof lora des Bodens. S. Pf lanzenernaehr. Bodenkund. 142: 456 – 475.

    Article  Google Scholar 

  71. Haider, K., and J. P. Martin. 1981. Decomposition in soil of specifically 14C-labelled model and cornstalk lignins and coniferyl alcohol over two years as influenced by drying, rewetting and additions of an available C substrate. Soil Biol. Biochem. 13: 447 – 450.

    CAS  Google Scholar 

  72. Haider, K., L. R. Frederick, and W. Flaig. 1965. Reactions between amino acid compounds and phenols during oxidation. Plant Soil 22: 49 – 64.

    Article  CAS  Google Scholar 

  73. Haider, K., J. P. Martin, and Z. Filip. 1974. Humus biochemistry, pages 195–244,inE.A. Paul and A. D. McLaren, editors. Soil biochemistry. vol. 4. Marce l Dekke r, New York.

    Google Scholar 

  74. Haider, K., J. P. Martin, and E. Rietz. 1977. Decomposition in soil of 14C-labelled coumaryl alcohols, free and linked into dehydropolymer and plant lignins and model humic acids. Soil Sci. Soc. Amer. J. 41: 556 – 562.

    Article  CAS  Google Scholar 

  75. Hall, P., W. Glasser, and S. Drew. 1980. Enzymatic transformations of lignin, pages 17-31, in T.K. Kirk, T. Higuchi and H-M. Chang, editors. Lignin biodegrade ation: microbiology, chemistry and potential applications. vol. 11. CRC Press, Boca Raton, Florida.

    Google Scholar 

  76. Harris, R.F., G. Chesters, and O.N. Allen. 1966. Dynamics of soil aggregation. Adv. Agron. 18: 107 – 169.

    Article  CAS  Google Scholar 

  77. Haska, G. 1981. Activity of bacteriolytic enzymes adsorbed to clays. Microbial Ecol. 7: 331 – 334.

    Article  Google Scholar 

  78. Hatcher, P. G., R. Rowan, and M.A. Mattingly. 1980a.1 H and13 C NMR of marine humi c acids. Org. Geochem. 2:77–85.

    Google Scholar 

  79. Hatcher, P. G., D. L. Van der Hart, and W. L. Earl. 1980b. Use of solid-state 13C tIMR in structural studies of humic acids and humin from Holocene sediments. Org. Geochem. 2: 87 – 92.

    Article  CAS  Google Scholar 

  80. Hayes, M. H. B., and R. S. Swift. 1978. The chemistry of soil organic colloids, pages 179–320inD.J.Greenland and M.H.B. Hayes, editors. The chemistry of soil constituents. John Wiley and Sons, New York.

    Google Scholar 

  81. Hill, I. R., and S.J.L. Wright. 1978. Pesticide microbiology. Academic Press, New York.

    Google Scholar 

  82. Hope, C.F.A., and R. G. Burns. 1983. Extrace llular cellulase activity in soil. Soc. Gen. Microbiol. Quart. 10: 12.

    Google Scholar 

  83. Hope, C. F A., J. M. Alexander, and R. G. Burns. 1980. –-D-Glucosidase activity in soil. Soc. Gen. Microbiol. Quart. 8:41.

    Google Scholar 

  84. Hurst, H.M., and N.A. Burges. 1967. Lignin and humic acids, pages 260–286,inA. D. McLaren and G. H. Peterson, editors. Soil biochemistry. Marcel Dekker, New York.

    Google Scholar 

  85. Iverson, K. C., and F. J. Sowden. 1962. Methods for the analysis of carbohydrate material in soil: 1. Colorimetric determination of uronic acids, hexoses and pentoses. Soil Sci. 94: 245 – 250.

    Article  Google Scholar 

  86. Jenkinson, D. S. 1966. The priming action, pages 199–207,inReport of FAO/IAEA Tech. Meet. on the Use of Isotopes in Soil Organic Matter Studies, Braunschweig, Germany, 1963.

    Google Scholar 

  87. Jenkinson, D.S. 1971. Studies on decomposition of 14C-labelled organic matter in soil. Soil Sci. 111: 64 – 70.

    Article  CAS  Google Scholar 

  88. Jenkinson, D. S., and A. Syanaba. 1977. Decomposition of carbon-14 labelled plant material under tropical conditions. Soil Sci. Soc. Am. J. 41: 912 – 915.

    Article  CAS  Google Scholar 

  89. Jenkinson, D. A., and J.N. Ladd. 1981. Microbial biomass in soil: measurement and turnover, pages 415–471, in E.A. Paul and J.N. Ladd, editors. Soil biochemistry. vol. 5. Marcel Dekker, New York.

    Google Scholar 

  90. Jenkinson, D.A., and D.S. Powlson. 1976. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8: 209 – 213.

    Article  CAS  Google Scholar 

  91. Jenkinson, D. S., and J. H. Rayner. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123: 298 – 305.

    Article  CAS  Google Scholar 

  92. Jeuniaux, C. 1963. Chitine et chitinolyse. Mason et Cie, Paris.

    Google Scholar 

  93. Kassim, G., J. P. Martin, and K. Haider. 1981. Incorporation of a wide variety of organic substrate carbons into soil biomass as estimated by the fumigation procedure. Soil Sci. Soc. Amer. J. 45: 1106 – 1112.

    Article  CAS  Google Scholar 

  94. Kassim, G., D. E. Stott, J. P. Martin, and K. Haider. 1982. Stabilization and incorporation into biomass of phenolic and benzenoid carbons during biodegrade ation in soil. Soil Sci. Soc. Amer. J. 46: 305 – 309.

    Article  CAS  Google Scholar 

  95. Kirk, T.K. 1971. The effects of microorganisms on lignin. Ann. Rev. Phytopath. 9: 185 – 210.

    Article  CAS  Google Scholar 

  96. Kirk, T. K., W. J. Connors, and J. G. Zeikus. 1977. Advances in understanding the microbiological degradation of lignin. Rev. Adv. Phytopath. 11: 369 – 394.

    CAS  Google Scholar 

  97. Kiss, S., M. Dragan-Bularda, and D. Radulescu. 1975. Biological significance of enzymes in soil. Adv. Agron. 27: 25 – 87.

    Article  CAS  Google Scholar 

  98. Kononova, M.M. 1966. Soil organic matter. Pergammon Press, Oxford.

    Google Scholar 

  99. Kononova, M.M. 1972. Current problems in the study of soil organic matter. Pochvovedenie 7: 27 – 36.

    Google Scholar 

  100. Kumada, K., A. Suzuki, and K. Aizawa. 1961. Isolation of anthraquinone from humus. Nature (London) 191: 415 – 416.

    Article  CAS  Google Scholar 

  101. Ladd, J.N., and H.H.A. Butler. 1966. Comparison of some properties of soil humic acids and synthetic phenolic polymers incorporating amino derivatives. Aust. J. Soil Res. 4: 41 – 54.

    Article  CAS  Google Scholar 

  102. Ladd, J.N., and J.H.A. Butler. 1975. Humus-enzyme systems and synthetic organic polymer-enzyme analogs, pages 143–193,inE.A. Paul and A. D. McLaren, editors. Soil biochemistry. vol. 4. Marce l Dekker, New York.

    Google Scholar 

  103. Lethbridge, G., A. T. Bull, and R. G. Burns. 1978. Assay and properties of 1,3-S-glucan ase in soil. Soil Biol. Biochem. 10: 389 – 391.

    Article  CAS  Google Scholar 

  104. Linhares, L. F., and J. P. Martin. 1978. Decomposition in soil of the humic acid-type melanins of Eurotiumechinulatum,Aspergillusglaucus sp. and other fungi. Soil Sci. Soc. Am. J. 42: 738.

    Article  CAS  Google Scholar 

  105. Linhares, L.F., and J.P. Martin. 1979a. Decomposition in soil of emodin, chrysophanic acid and a mixture of anthraquinones synthesized by anAspergil’lusglaucus isolate. Soil Sci. Soc. Amer. J. 43: 940 – 945.

    Article  CAS  Google Scholar 

  106. Linhares, L.F., and J.P. Martin. 1979b. Carbohydrate content of fungal humic acid-type polymers (me lanins). Soil Sci. Soc. Amer. J. 43: 313 – 318.

    Article  CAS  Google Scholar 

  107. Ludemann, H.D., H. Lentz, and J.P. Martin. 1982. Carbon-13 nuclear magnetic resonance spectra of some fungal melanins and humic acids. Soil Sci. Soc. Amer. J. 46: 957 – 962.

    Article  Google Scholar 

  108. McGill, W. B., H. W. Hunt, R. G. Woodmansee, and J. O. Reuss. 1981. Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils, pages 49-115, in F.E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. /NFR. (Stockholm)33.

    Google Scholar 

  109. Manners, D.J. 1979. The enzymic degradation of starches, pages 75–91,inJ.M.V. Blanchard and J. R. Mitchell, editors. Polysaccharides in foods. Butterworths, London.

    Google Scholar 

  110. Marshall, K.C. 1980. Reactions of microorganisms, ions and macromolecules at interfaces, pages 93–106,inD. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch and J.H. Slater, editors. Contemporary Microbial Ecology. Academic Press, London.

    Google Scholar 

  111. Marshman, N. A., and K. C. Marshall. 1981. Bacterial growth on proteins in the presence of clay minerals. Soil Biol. Biochem. 13: 127 – 134.

    Article  CAS  Google Scholar 

  112. Martin, J. P. 1971. Decomposition and binding action of polysaccharides in soil. Soil Biol. Biochem. 3: 33 – 44.

    Article  CAS  Google Scholar 

  113. Martin, J.P., and D.D. Focht. 1977. Biological properties of soils, pages 115–169,inSoils for management of organic wastes and waste waters. ASA, CSSA and SSSA publication Madison, Wisconsin, USA.

    Google Scholar 

  114. Martin, J.P., and K. Haider. 1968. Phenolic polymers ofStachybotxys atra,Stachybotrys chartarumandEpicoccum nigrumin relation to humic acid formation. Soil Sci. 107: 260 – 270.

    Article  Google Scholar 

  115. Martin, J.P. and K. Haider. 1971. Microbial activity in relation to soil humus formation. Soil Sci. 111: 54 – 63.

    Article  CAS  Google Scholar 

  116. Martin, J.P., and K. Haider. 1976. Decomposition of specifically carbon-14-labelled ferulic acid; Free and linked into model humic acid-type polymers. Soil Sci. Soc. Amer. J. 40: 377 – 380.

    Article  CAS  Google Scholar 

  117. Martin, J.P., and K. Haider. 1977. Decomposition in soil of specifically 14C-labelled DHP and cornstalk lignins, model humic acid type polymers and coniferyl alcohols, pages 23–32,inSoil organic matter studies, vol. 2. IAEA-FAO, Vienna.

    Google Scholar 

  118. Martin, J.P., and K. Haider. 1979a. Effect of concentration on decomposition of some 14C-labelled phenolic compounds, benzoic acid, glucose, cellulose, wheat straw andChlorellaprotein in soil. Soil Sci. Soc. Amer. J. 43: 917 – 920.

    Article  CAS  Google Scholar 

  119. Martin, J. P., and K. Haider. 1979b. Biodegradation of 14C-labelled model and cornstalk lignins, phenols, model phenolase humic polymers and fungal melanins as influenced by a readily available C source and soil. App. Environ. Microb. 38: 283 – 289.

    CAS  Google Scholar 

  120. Martin, J. P., and K. Haider. 1980a. A comparison of the use of phenolase and peroxidase for the synthesis of model humic acid-type polymers. Soil Sci. Soc. Amer. J. 44: 983 – 988.

    Article  CAS  Google Scholar 

  121. Martin, J. P., and K. Haider. 1980b. Microbial degradation and stabilization of 14C-labelled lignins, phenols and phenolic polymers in relation to soil humus formation, pages 77–100,inK. Kirk, T. Higuchi and H-M. Chang, editors. Lignin biodegradation: microbiology, chemistry and potential applications. vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  122. Martin, J. P., and D. Stott. 1981. Microbial transformations of herbicides in soil. Proc. Western Soc. Weed Sci. 34: 39 – 54.

    CAS  Google Scholar 

  123. Martin, J. P., J. O. Ervin, and R. A. Shepherd. Decomposition of iron, aluminium, zinc and copper salts or complexes of some microbial and plant polysaccharides in soil. Soil Sci. Soc. Amer. Proc. 30:196–200.

    Google Scholar 

  124. Martin, J.P., K. Haider, and E. Bondietti. 1972. Properties of model humic acids synthesized by phenoloxidase and autoxidation of phenols and other compounds formed by soil fungi, pages 171–186,inD. Povoledo and H.L. Gottermann, editors. Humic substances. Proc. Int. Meeting, Nieuwersluis, The Netherlands, Pudoc, Wageningen.

    Google Scholar 

  125. Martin, J. P., K. Haider, and L. Linhares. 1979. Decomposition and stabilization of ring- 1 4C-labelled catechol in soil. Soil Sci. Soc. Amer. J. 43: 100 – 104.

    Article  CAS  Google Scholar 

  126. Martin, J.P., K. Haider, and G. Kassim. 1980. Biodegradation and stabilization after 2 years of specific crop, lignin and polysaccharide carbons in soils. Soil Sci. Soc. Amer. J. 44: 1250 – 1255.

    Article  CAS  Google Scholar 

  127. Martin, J.P., K. Haider, and C. Saiz-Jimenez. 1974. Sodium amalgam reductive degradation of fungal and model phenolic polymers, soil humic acids and simple phenolic compounds. Soil Sci. Soc. Amer. Proc. 38: 760 – 765.

    Article  CAS  Google Scholar 

  128. Martin, J. P., K. Haider, and D. Wolf. 1972. Synthesis of phenols and phenolic polymers byHendersonula toruloideain relation to soil humus formation. Soil Sci. Soc. Amer. Proc. 36: 311 – 315.

    Article  CAS  Google Scholar 

  129. Martin, J.P., A.A. Parsa, and K. Haider. 1978. influence of intimate association with humic polymers on biodegradation of {14C} labelled organic substrates in soil. Soil Biol. Biochem. 10:483–486.

    Google Scholar 

  130. Martin, F., C. Saiz-Jimenez, and A. Cert. 1977. Pyrolysis-gas chromatography of soil humic fractions. 1. The low boiling point compounds. Soil Sci. Soc. Amer. J. 44: 1114 – 1118.

    Article  Google Scholar 

  131. Martin, J. P., K. Haider, W. J. Farmer, and E. FustecMathon. 1974. Decomposition and distribution of residual activity of some 14C-microbial polysaccharides and cells, glucose, cellulose and wheat straw. Soil Biol. Biochem. 6: 221 – 230.

    Article  CAS  Google Scholar 

  132. Martin, J. P., W. P. Martin, J. B. Page, W.A. Raney, and J. P. DeMent. 1955. Soil aggregation. Adv. Agron. 7:1–37.

    Google Scholar 

  133. Martin, J.P., H. Zunino, P. Peirano, M.Caiozzi, and K. Haider. 1982. Decomposition of 14C-labelled lignins, model humic acid polymers, and fungal me lanins in allophanic soils. Soil Biol. Biochem. 14: 289 – 293.

    Article  CAS  Google Scholar 

  134. Mason, H.S. 1953. The structure of melanins, pages 277–303,inM. Gordon, editor. Pigment cell growth. Academic Press, New York.

    Google Scholar 

  135. Mason, H.S. 1955. Comparative biochemistry of the phenolase complex. Advances in Enzymology 16: 105 – 173.

    CAS  Google Scholar 

  136. Mathur, S.P. 1971. Characterization of soil humus through enzymatic degradation. Soil Sci. 111: 147 – 157.

    Article  CAS  Google Scholar 

  137. Mathur, S.P., and M. Schnitzer. 1978. A chemical and spectroscopic characterization of some synthetic analogues of humic acids. Soil Sci. Soc. Amer. J. 42: 519 – 596.

    Article  Google Scholar 

  138. Mayaudon, J., and P. Simonart. Etude de la decomposition de la matiere organique dans le sol au moyden de carbone radioactiv: 5. Plant Soil 11:181–192.

    Google Scholar 

  139. Maximov, O. B., T. V. Shvets, and Yu. N. Elkin. 1977, On permanganate oxidation of humic acids. Geoderma 19: 63 – 78.

    Article  CAS  Google Scholar 

  140. Meuzelaar, H.L.C., K. Haider, B. R. Nagar, and J. P. Martin. 1977. Comparative studies of pyrolysis-mass spectra of melanins, model phenolic polymers and humic acids. Geoderma 17: 239 – 252.

    Article  CAS  Google Scholar 

  141. Musso, H. 1967. Phenol coupling, pages 1–94,inW.I. Taylor and A. R. Battersby, editors. Oxidative coupling of phenols. Marcel Dekker, New York.

    Google Scholar 

  142. Muzzarelli, R.A.A. 1977. Chitin. Pergamon, Oxford.

    Google Scholar 

  143. Nelson, D.W., J. P. Martin, and J.O. Ervin. 1979. Decomposition of microbial cells and components in soil and their stabilization through complexing with model acid-type phenolic polymers. Soil Sci. Soc. Amer. J. 43: 84 – 88.

    Article  CAS  Google Scholar 

  144. Neuhauser, F.F., R. Hartenstein, and W. J. Connors. 1978. Soil invertebrates and the degradation of vanillin, cinnamic acid, and lignins. Soil Biol. Biochem. 10: 431 – 475.

    Article  CAS  Google Scholar 

  145. Niclaus, R.A. 1968. Melanins, Hermann, Paris.

    Google Scholar 

  146. Oades, J. M., and G. H. Wagner, 1971, Biosynthesis of sugars in soils incubated with 14C glucose and 14C dextran. Soil Sci. Soc. Amer. J. 35: 914 – 922.

    Article  CAS  Google Scholar 

  147. Oglesby, R. T., R. F. Christman, and C. H. Driver. 1967. The biotransformation of lignin to humus. Adv. App. Microbiol. 9: 171 – 184.

    Article  CAS  Google Scholar 

  148. Paul, E. A., and J. A. Van Veen. 1978. The use of tracers to determine the dynamic nature of organic matter, pages 61–102,in11th Congress International Society of Soil Sci. Vol. 3.

    Google Scholar 

  149. Paulson, K.N., and L.T. Kurtz. 1969. Locus of urease activity of soil. Soil Sci. Soc. Amer. Proc. 33: 897 – 901.

    Article  CAS  Google Scholar 

  150. Payne, J.W. 1980. Microorganisms and nitrogen sources. John Wiley and Sons, Chichester.

    Google Scholar 

  151. Payne, J. W., and C. Gi lvarg. 1978. Transport of peptides in bacteria, pages 325-383, in B.P. Rosen editor. Bacterial transport. Marcel Dekker, New York

    Google Scholar 

  152. Pinck, L. A. and F. E. Allison. 1951. Maintenance of soil organic matter: III. Influence of green manures on the release of native soil carbon. Soil Sci. 71: 67 – 75.

    Article  CAS  Google Scholar 

  153. Piper, T. J., and A. M. Posner. 1972. Sodium amalgam reduction of humic acid. II. Application of the method. Soil Biol. Biochem. 4: 525 – 531.

    Article  CAS  Google Scholar 

  154. Powell, D.A. 1979. Structure, solution properties and biological interactions of some microbial extracellular polysaccharides, pages 117–160, in R.C.W. Berkeley, G. W. Gooday and D. C. Ellwood, editors. Microbial polysaccharides and polysaccharases. Academic Press, London.

    Google Scholar 

  155. Reisinger, O., and G. Kilbertus. 1974. Biodegradation et humification. IV. Microorganismen intevenant dams la decomposition des cellules d’Aureobasidium pullulans. (De Bary) Arnaud. Can. J. Microbiol. 20: 299 – 306.

    Article  CAS  Google Scholar 

  156. Robinson, T. 1963. The Organic constituents of higher plants. Burgess Publishing Co., Minneapolis.

    Google Scholar 

  157. Rogers, H. J., H. R. Perkins and J. B. Ward. 1980. Microbial cell walls and membranes. Chapman and Hall, London.

    Google Scholar 

  158. Rombouts, F.M., and W. Pilnik. 1980. Pectic enzymes, pages 227–282,inA.H. Rose, editor. Economic microbiology. vol. 5. Academic Press, London.

    Google Scholar 

  159. Rosenberg, S.L. 1978. Cellulose and lignocellulose degradation by thermophilic and thermotolerant fungi. Mycologia 70: 1 – 13.

    Article  CAS  Google Scholar 

  160. Rosenberg, S.L. 1979. Physiological studies of lignocellulose degradation by the thermotolerant mould Chx sosporiumpruinosum. Dev. Ind. Microbiol. 20: 177 – 142.

    Google Scholar 

  161. Saiz-Jimenez, C., K. Haider, and J. P. Martin. 1975. Anthraquinones and phenols as intermediates in the formation of dark-colored, humic acid-like pigments byEurotium echinulatum. Soil Sci. Soc. Amer. Proc. 39: 649 – 653.

    Article  CAS  Google Scholar 

  162. Saiz-Jimenez, C., K. Haider, and H.L.C. Meuzelaar. 1979. Comparison of soil organic matter and its fractions by pyrolysis-mass spectrometry. Geoderma 22: 25 – 37.

    Article  CAS  Google Scholar 

  163. Sauerbeck, D. 1966. A critical evaluation of incubation experiments on the priming effect of green manure, pages 199–207,inReport of FAO/IAEA Tech. Meet. on The Use of Isotopes in Soil Organic Matter Studies, Braunschweig, Germany, 1963.

    Google Scholar 

  164. Sauerbeck, D. 1968. Die Umsetzung markierter organischer Substanzen in Boden in Abhangigkeit von Art, Menge, and Rottegrad. Landwirtsch. Forsch. 21: 91 – 102.

    Google Scholar 

  165. Sauerbeck, D. and F. Fuhr. 1968. Alkali extraction and fractionation of labelled plant material before and after decomposition, a contribution to the technical problems in humification studies, pages 3–11,inIsotopes and Radiation in Soil Organic Matter Studies. IAEA, Vienna.

    Google Scholar 

  166. Sauerbeck, D., and M.A. Gonzalez. 1977. Field decomposition of carbon-14-labelled plant residues in various soils of the Federal Republic of Germany and Costa Rica, pages, 117–132,inSoil Organic Matter Studies, IAEA-FAO, Vienna. Vol. l.

    Google Scholar 

  167. Sauerbeck, D. R., and B. G. Johnen. 1974. Radiometrische Untersuchungen zur Humusbilanz. Landv. Forsh. 27: 137 – 145.

    Google Scholar 

  168. Schaller, F. 1968. Soil animals. Univ. of Michigan Press, Ann Arbor.

    Google Scholar 

  169. Schlesinger, W.H. 1977. Carbon balance in terrestrial detritus. Ann. Rev. Ecol Systems 8: 51 – 81.

    Article  CAS  Google Scholar 

  170. Schnitzer, M. 1977. Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones, pages 117–130,inProc. of Symposium Soil Organic Matter Studies, Braunschweig, Germany.

    Google Scholar 

  171. Schnitzer, M., and S.U. Khan. 1972. Humic substances in the environment. Marcel Dekker, New York.

    Google Scholar 

  172. Schnitzer, M., and J.A. Neyroud. 1975. Further investigations on the chemistry of fungal “humic acids”. Soil Biol. Biochem. 7: 365 – 371.

    Article  CAS  Google Scholar 

  173. Shields, J.A., and E.A. Paul. 1973. Decomposition of C-14-labelled plant materials under field conditions. Can. J. Soil Sci. 53: 297 – 306.

    Article  CAS  Google Scholar 

  174. Shimada, M. 1980. Stereobiochemical approach to lignin biodegradation: possible significance of nonstereospecific oxidation catalysed by laccase for lignin decomposition by white-rot fungi, pages 195–213,inT. K. Kirk, T. Higuchi and H-M. Chang, editors. Lignin biodegradation: microbiology, chemistry and potential applications. vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  175. Sims, J. J., A. F. Rose and R. R. Izac. 1978. Applications of 13C NMR to marine natural products, pages 297–378,inP.J. Scheuer, editor. Marine natural products. Academic Press, New York.

    Google Scholar 

  176. Sjoblad, R.D., and J.-M. Bollag. 1981. Oxidative coupling of aromatic compounds by enzymes from soil microorganisms, pages 113–152,in E.A. Paul and J.N. Ladd, editors. Soil biochemistry vol.5. Marcel Dekker New York.

    Google Scholar 

  177. Skujins, J. 1976. Extracellular enzymes in soil. CRC Crit. Rev. Microbiol 4: 383 – 421.

    Article  PubMed  CAS  Google Scholar 

  178. Sorensen, L. H. 1975. The influence of clay on the rate of decay of amino acid metabolites synthesized in soils during decomposition of cellulose. Soil Biol. Biochem. 7: 171 – 177.

    Article  CAS  Google Scholar 

  179. Sørensen, L.H. 1981. Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay. Soil Biol. Biochem. 13: 313 – 321.

    Article  Google Scholar 

  180. Sowden, F.J., S.M. Griffith, and M. Schnitzer. 1976. The distribution of nitrogen in some highly organic tropical volcanic soils. Soil Biol. Biochem. 8: 55 – 60.

    Article  CAS  Google Scholar 

  181. Staaf, H., and B. Berg. 1981. Plant litter input to soil, pages 147–162,inF. E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. NF R (Stockholm) 33.

    Google Scholar 

  182. Stevenson, F. J. 1957. Investigations of amino polysaccharides in soil. Soil Sci. 83: 113 – 122.

    Article  CAS  Google Scholar 

  183. Stevenson, F.J. 1982. Humus chemistry. John Wiley, New York.

    Google Scholar 

  184. Stewart, J.W.B., and R.B. McKercher. 1982. Phosphorous cycle, pages 221–238,inR. G. Burns and J.H. Slater, editors. Experimental microbial ecology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  185. Stott, D. E., J. P. Martin, D. Focht, and K. Haider. 1983. Biodegradation, stabilization in humus and incorporation in biomass of 2,4-D and Chlorocatechol carbons. Soil Sci. Soc. Amer. J. 47: 66 – 70.

    Article  CAS  Google Scholar 

  186. Stotzky, G. 1967. Clay minerals and microbial ecology. N.Y. Acad. Sci., Trans. (Ser. 11 ) 30: 11 – 21.

    CAS  Google Scholar 

  187. StotzkyG. 1974. Activity, ecology, and population dynamics of microorganisms in soil, pages 57–135,inA. Laskin and H. Lechevalier, editors. Microbial ecology. CRC Press, Cleveland, Ohio.

    Google Scholar 

  188. Stotzky, G. 1980. Surface interactions between clay minerals and microbes, viruses and soluble organics and the probable importance of these interactions to the ecology of microbes in soil, pages 231–47,inR.C.W. Berkeley, J.M. Lynch, J. Melling, P. R. Rutter and B. Vincent, editors. Microbial adhesion to surfaces. Ellis Horwood, Chichester.

    Google Scholar 

  189. Stotzky, G., and R. G. Burns. 1982. The soil environment: clay-humus-microbe interactions, pages 105–133, in R. G. Burns and J.H. Slater, editors. Experimental microbial ecology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  190. Suf lita, J. M., and J-M. Bollag. 1981. Polymerization of phenolic compounds by a soil-enzyme complex. Soil Sci. Soc. Amer. J. 45: 297 – 302.

    Article  CAS  Google Scholar 

  191. Swift, M.J., O.W. Heal, and J.M. Anderson. 1979. Decomposition in terrestrial ecosystem. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  192. Swincer, G. D., J. M. Oades, and D. J. Greenland. 1968. Studies on soil polysaccharides. 1. The isolation of polysaccharides from soil. II. The composition and properties of polysaccharides in soils under pasture and under fallow wheat rotation. Aust. J. Soil Res. 6, 211 – 239.

    Article  CAS  Google Scholar 

  193. Swincer, G. D., J. M. Oades, and D. J. Greenland. 1969. The extraction, characterization, and significance of soil polysaccharides. Adv. Agron. 21: 195 – 235.

    Article  CAS  Google Scholar 

  194. Thomson, R.H. 1971. Naturally occurring quinones. Academic Press, New York.

    Google Scholar 

  195. Thorpe, J., and G.D. Smith. 1949. Higher categories of soil classification: order, suborder, and great soil groups. Soil Sci. 67: 117 – 126.

    Article  Google Scholar 

  196. Tsao, G.T. 1978. Cellulose material as a renewable resource. Process Biochem. 13: 12 – 14.

    CAS  Google Scholar 

  197. Turchenek, L. W., and J. M. Oades. 1979. Fractionation of organo-mineral complexes by sedimentation and density techniques. II. Organic and mineral components. Geoderma 21: 311 – 343.

    Article  CAS  Google Scholar 

  198. Varadi, J. 1972. The effect of aromatic compounds on cellulase and xylanase production of fungiShizophyllumcommune andChaetomium globosum, pages 129–135,inA.H. Walters and E.H. Hueck van der Plas, editors. Biodeterioration of materials. vol. 2. Applied Science Publishers, London.

    Google Scholar 

  199. Verma, L., and J.P. Martin. 1976. Decomposition of algal cells and components and their stabilization through complexing with model humic acid-type phenolic polymers. Soil Biol. Biochem. 8: 85 – 90.

    CAS  Google Scholar 

  200. Verma, L., J.P. Martin, and K. Haider. 1975. Decomposition of carbon-14-labelled proteins, peptides, and amino acids, free and complexed with humic polymers. Soil Sci. Soc. Amer. Proc. 39: 279 – 284.

    Article  CAS  Google Scholar 

  201. Vohra, R. M., C. K. Shirkot, S. Dhawan, and K. G. Gupta. 1980. Effect of lignin and some of its components on the production and activity of cellulase (s) by Trichodermareesei. Biotech. Bioeng. 22: 1497 – 1500.

    Article  CAS  Google Scholar 

  202. Wada, K., and T. Higashi. 1976. The categories of aluminum- and iron- humus complexes in ando soils determined by selective dissolution. J. Soil Sci. 27: 357 – 368.

    Article  CAS  Google Scholar 

  203. Wagner, G. H. 1975. Microbial growth and carbon turnover, pages 269–305, in E.A. Paul and A.D. McLaren, editors. Soil biochemistry vol. 3. Marcel Dekker, New York.

    Google Scholar 

  204. Wagner, G. H., and V. K. Mutatkar. 1968. Amino components of soil organic matter formed during humification of C14 glucose. Soil Sci. Soc. Am. Proc. 32: 683 – 686.

    Article  Google Scholar 

  205. Westermark, V., and K-E. Eriksson. 1974. Carbohydratedependent enzymic quinone reduction during lignin degradation. Acta Chem. Scand. 28: 204 – 208.

    Article  CAS  Google Scholar 

  206. Westermark, V., and K-E. Eriksson. 1975. Purification and properties of cellobiose: quinone oxidoreductase fromSporotrichum pulverulentum. Acta Chem. Scand.29: 419 – 424.

    Google Scholar 

  207. Wolf, D.C., and J.P. Martin. 1976. Decomposition of fungal mycelia and humic-type polymers containing carbon-14 from ring and side-chain labelled 2,4-D and chlorpropham. Soil Sci. Soc. Amer. J. 40: 700 – 704.

    Article  CAS  Google Scholar 

  208. Wolfinbarger, L. 1980. Transport and utilization of peptides by fungi, pages 281–300,inJ.W. Payne, editor. Microorganisms and nitrogen sources. John Wiley and Sons, Chichester.

    Google Scholar 

  209. Zeikus, J. G. 1980. Fate of lignin and related aromatic substrates in anaerobic environments, pages 101–109,inT. K. Kirk, T. Higuchi and H-M. Chang, editors. Lignin biodegradation microbiology, chemistry, and potential applications. vol. 1. CRC Press, Boca Raton, Florida.

    Google Scholar 

  210. Zunino, H., F. Borie, S. Aguilera, J. P. Martin, and K. Haider. 1982. Decomposition of 14C-labelled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol. Biochem. 14: 37 – 43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Burns, R.G., Martin, J.P. (1986). Biodegradation of Organic Residues in Soil. In: Mitchell, M.J., Nakas, J.P. (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Developments in Biogeochemistry, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5173-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5173-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8789-6

  • Online ISBN: 978-94-009-5173-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics