Skip to main content

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 3))

Abstract

Agriculture manipulates energy fluxes, nutrient dynamics and hydrologic cycles. Descriptions of nutrient cycling and decomposition in agro-ecosystems are site-specific and thus generalizations are of limited validity unless processes and regulatory mechanisms are considered. Consequently, this chapter discusses organic matter status of agricultural soils, some of the mechanisms regulating processes and recently developed ideas on nutrient dynamics in manipulated soil-plant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A.L., F.J. Stevenson, and L.T. Kurtz. 1973. Chemical distribution of residual fertilizer nitrogen in soil as revealed by nitrogen-15 studies. J. Environ. Qual., 2: 120 – 124.

    CAS  Google Scholar 

  2. Allison, F.E. 1966. The fate of nitrogen applied to soils. Adv. Agron., 18: 219 – 258.

    CAS  Google Scholar 

  3. Amato, M., and J.M. Ladd. 1980. Studies of nitrogen immobilization and mineralization in calcareous soils. V. Formation and distribution of isotope-labelled biomass during the decomposition of C and 15N-labelled plant material. Soil Biol. Biochem., 12: 405 – 411.

    CAS  Google Scholar 

  4. Aulakh, M.S., D.A. Rennie, and E.A. Paul. 1982. Gaseous nitrogen losses from cropped and summer-fallowed soils. Can. J. Soil Sci., 62: 187–195.

    CAS  Google Scholar 

  5. Barrow, N.J. 1969. The accumulation of soil organic matter under pasture and its effect on soil properties. Aust. J. Exp. Agri. Anim. Husb.,9: 437 – 444.

    Google Scholar 

  6. Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Ann. Rev. Microbiol., 22: 87 – 108.

    CAS  Google Scholar 

  7. Bauer, A., and A. Black. 1981. Soil carbon, nitrogen and bulk density comparisons in two cropland tillage systems after 25 years and in virgin grassland. Soil Sci. Soc. Am. J., 45: 1166 – 1170.

    Google Scholar 

  8. Black, A.L. 1973. Soil property changes associated with crop residue management in a wheat-fallow rotation. Soil Sci. Soc. Am. Proc., 37: 943 – 946.

    CAS  Google Scholar 

  9. Bremner, J.M. 1965. Organic nitrogen in soils. Pages 93-149inW.V. Bartholomew and F.E. Clark, editors. Soil Nitrogen. Amer. Soc. Agron., Madison, Wisconsin.

    Google Scholar 

  10. Broadbent, F.E. 1968. Nitrogen immobilization in relation to N-containing fractions of soil organic matter. Pages 131-142inIsotopes and radiation in soil organic matter studies, IAEA, Vienna.

    Google Scholar 

  11. Brown, P.L., and D.D. Dickey. 1970. Losses of wheat straw residue under simulated field conditions. Soil Sci. Soc. Am. Proc., 34: 118 – 121.

    Google Scholar 

  12. Burford, J. R., R. J. Dowdell, and R. Crees. 1981. Emission of nitrous oxide to the atmosphere from direct-drilled and ploughed clay soils. J. Sci. Fd. Agric., 32: 219 – 223.

    CAS  Google Scholar 

  13. Cameron, D.R., C.G. Kowalenko, and K.C. Ivarson. 1978. Nitrogen and chloride distribution and balance in a clay loam soil. Can. J. Soil Sci., 58: 77 – 88.

    CAS  Google Scholar 

  14. Campbell, C.A., and E.A. Paul. 1978. Effects of fertilizer N and soil moisture on mineralization, N recovery and A-values, under spring wheat grown in small lysimeters. Can. J. Soil Sci., 58: 39 – 51.

    CAS  Google Scholar 

  15. Campbell, C.A., E.A. Paul, D.A. Rennie, and K.J. McCallum. 1967. Factors affecting the accuracy of the carbon-dating method in soil humus studies. Soil Sci.,104: 81 – 85.

    Google Scholar 

  16. Campbell, C.A., and W. Souster. 1982. Loss of organic matter and potentially mineralizable nitrogen from Saskatchewan soils due to cropping. Can. J. Soil Sci., 62: 651 – 656.

    CAS  Google Scholar 

  17. Cannon, K.R., J.A. Robertson, W.B. McGill, F.D. Cook, and D.S. Chanasyk. 1984. Production optimization on Gray Wooded soils. Farming for the Future project report #79-0132. Department of Soil Science, University of Alberta.

    Google Scholar 

  18. Cheshire, M.V., G.P. Sparling, and R.H.E. Inkson. 1979. The decomposition of straw in soil. Pages 65-71inE. Grossbard, editor. Straw decay and its effect on disposal and utilization. John Wiley, New York.

    Google Scholar 

  19. Chichester, F.W. 1969. Nitrogen in soil organo-mineral sedimentation fractions. Soil Sci., 107: 356 – 363.

    CAS  Google Scholar 

  20. Chichester, F.W. 1970. Transformations of fertilizer nitrogen in soil. II. Total and 15N-labelled nitrogen of soil organo-mineral sedimentation fractions. Plant Soil, 33: 437 – 456.

    CAS  Google Scholar 

  21. Clark, F.E., C.V. Cole, and R.A. Bowman. 1980. Nutrient cycling. Pages 713–758inA.I. Bregmeyer and G.M. Van Dyne, editors. Grasslands, systems analysis and man. Cambridge University Press, Cambridge.

    Google Scholar 

  22. Clark, M.D., and J.T. Gilmour. 1983. The effect of temperature on decomposition at optimum and saturated soil water contents. Soil Sci. Soc. Am. J., 47: 927 – 929.

    CAS  Google Scholar 

  23. Coote, D.R., and J.F. Ramsey. 1983. Quantification of the effects of over 35 years of intensive cultivation on four soils. Can. J. Soil Sci., 63: 1 – 14.

    Google Scholar 

  24. Davidson, J., F. Gray, and D. Pinson. 1967. Changes in organic matter and bulk density with depth under two cropping systems. Agron. J., 59: 375 – 378.

    Google Scholar 

  25. Dick, W.A. 1983. Organic carbon, nitrogen, and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Sci. Soc. Am. J., 47: 102 – 107.

    CAS  Google Scholar 

  26. DiRienzo, J.M., K. Nakamura, and M. Inouye. 1978. The outer membrane proteins of gram-negative bacteria: Biosynthesis, assembly and functions. Ann. Rev. Biochem., 47: 481 – 532.

    PubMed  CAS  Google Scholar 

  27. Doran, J.W. 1980. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 44: 765 – 771.

    CAS  Google Scholar 

  28. Doran, J.W., W. Wilhelm and J.F. Power. 1984. Crop residue removal and soil productivity with no-till corn, sorghum and soybean. Soil Sci. Soc. Amer. J., 48: 640 – 645.

    Google Scholar 

  29. Dormaar, J.F. 1979. Organic matter characteristics of undisturbed and cultivated Chernozemic and Solonetzic A horizons. Can. J. Soil Sci., 59: 349 – 356.

    CAS  Google Scholar 

  30. Dormaar, J.F., and U.J. Pittman. 1980. Decomposition of organic residues as affected by various dryland spring wheat-fallow rotations. Can. J. Soil Sci., 60: 97 – 106.

    CAS  Google Scholar 

  31. Doughty, J.L., F.D. Cook, and F.G. Warder. 1954. Effect of cultivation on the organic matter and nitrogen of Brown soils. Can. J. Agric. Sci., 34: 406 – 411.

    CAS  Google Scholar 

  32. Foster, R.C. 1981. Polysaccharides in soil fabrics. Sci., 214: 665 – 667.

    CAS  Google Scholar 

  33. Freney, J.R., and R.J. Miller. 1970. Investigation of the clay mineral protection theory for non-hydrolysable nitrogen in soil. J. Sci. Fd. Agric., 21: 57 – 61.

    CAS  Google Scholar 

  34. Freney, J.R., and J.R. Simpson. 1969. The mineralization of nitrogen from some organic fractions in soil. Soil Biol. Biochem., 1: 241 – 251.

    CAS  Google Scholar 

  35. Freyman, S., C.J. Palmer, E.H. Hobbs, J.F. Dormaar, G.B. Schaalje, and J.R. Moyer. 1982. Yield trends on long-term dryland wheat rotations at Lethbridge. Can. J. Plant Sci., 61: 609 – 619.

    Google Scholar 

  36. Frissel, M.J., and J.A. Van Veen. 1981. Simulation of nitrogen behaviour of soil-plant systems. Center for Agricultural Publishing and Documentation, Wageningen.

    Google Scholar 

  37. Gokhale, N.G. 1959. Soil nitrogen status under continuous cropping with manuring in the case of unshaded tea. Soil Sci., 87: 331 – 333.

    CAS  Google Scholar 

  38. Greenland, D.J. 1971. Changes in the nitrogen status and physical conditions of soils under pastures with special reference to the maintenance of the fertility of Australian soils used for growing wheat. Soils Fert., 34: 237 – 251.

    Google Scholar 

  39. Haas, H.J., C.E. Evans, and E.F. Miles. 1957. Nitrogen and carbon changes in great plain soils as influenced by cropping and soil treatments. US Department of Agriculture, Technical Bulletin 1164.

    Google Scholar 

  40. Haider, K., J.P. Martin, and E. Rietz. 1977. Decomposition in soil of 4C -labeled coumaryl alcohols: Free and linked into dehydropolymer and plant lignins and model humic acids. Soil Sci. Soc. Am. J., 41:556-562.

    Google Scholar 

  41. Hall, J.L., T.J. Flowers, and R.M. Roberts. 1974. Plant cell structure and metabolism. Longman, London.

    Google Scholar 

  42. Hobbs, J.A., and P.L. Brown. 1957. Nitrogen changes in cultivated dryland soils. Agron. J., 49: 257 – 260.

    CAS  Google Scholar 

  43. Hunt, H.W. 1977. A simulation model for decomposition in grasslands. Ecol.,58: 469 – 484.

    Google Scholar 

  44. Huntjens, J.L.M., and R.A.J.M. Albers. 1978. A model experiment to study the influence of living plants on the accumulation of soil organic matter in pastures. Plant Soil, 50: 411 – 418.

    CAS  Google Scholar 

  45. Jansson, S.L. 1958. Tracer studies on nitrogen transformations in soil with special attention to mineralization-immobilization relationships. An. R. Agric. Coll. Swed., 24: 101 – 361.

    CAS  Google Scholar 

  46. Jansson, S.L. 1960. On the establishment and use of tagged microbial tissue in soil organic matter research. Pages 635-641. 7th Int. Cong. Soil Sci., Madison, Wis., USA.

    Google Scholar 

  47. Jansson, S.L., and J. Persson. 1968. Co-ordination of humus chemistry and soil organic-matter biology by isotopic techniques. Pages 111-124inThe Use of Isotopes in Soil Organic Matter Studies. IAEA, Vienna.

    Google Scholar 

  48. Jenkinson, D.S. 1965. Studies on the decomposition of plant material in soil. I. Losses of carbon from 4C -labelled ryegrass incubated with soil in the field. J. Soil Sci., 16: 104 – 115.

    CAS  Google Scholar 

  49. Jenkinson, D.S. 1966. Studies of the decomposition of plant material in soil. II. Partial sterilization of soil and the soil biomass. J. Soil Sci., 17: 280 – 302.

    CAS  Google Scholar 

  50. Jenkinson, D.S. 1968. Chemical tests for potentially available nitrogen in soil. J. Sci. Fd. Agric. 19: 160 – 168.

    CAS  Google Scholar 

  51. Jenkinson, D.S. 1977. Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from C labelled ryegrass decomposing under field conditions. J. Soil Sci., 28: 424 – 434.

    CAS  Google Scholar 

  52. Jenkinson, D. S., and A. Ayanaba. 1977. Decomposition of carbon-14 labeled plant material under tropical conditions. Soil Sci. Soc. Amer. J., 41: 912 – 915.

    CAS  Google Scholar 

  53. Jenkinson, D.S., and A.E. Johnson. 1976. Soil organic matter in the Hoosfield continuous barley experiment. Rothamsted Report for 1976, part 2: 87 – 101.

    Google Scholar 

  54. Jenkinson, D.S., and D.S. Powlson. 1976. The effect of biocidal treatments on metabolism in soil. V. A method of measuring soil biomass. Soil Biol. Biochem., 8: 209 – 213.

    CAS  Google Scholar 

  55. Jenkinson, D.S., and J.H. Rayner. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci.,123: 298–305.

    Google Scholar 

  56. Jenny, H. 1980. The soil resource. Springer-Verlag, New York.

    Google Scholar 

  57. Johnston, J., G. Browning, and M. Russell. 1942. The effect of cropping practices of aggregation, organic matter content and loss of soil and water in Marshall silt loam. Soil Sci. Soc. Am. Proc., 7: 105–107.

    Google Scholar 

  58. Juma, N.G. 1981. Dynamics of soil and fertilizer nitrogen. Ph.D. Thesis, University of Saskatchewan, Saskatoon.

    Google Scholar 

  59. Juma, N.G., and E.A. Paul. 1981. Use of tracers and computer simulation techniques to assess mineralization and immobilization of soil nitrogen. Pages 145-154inM.J. Frissel and J.A. Van Veen, editors. Simulation of Nitrogen Behavior in Soil-Plant Systems. Pudoc, The Netherlands.

    Google Scholar 

  60. Juma, N.G., and E.A. Paul. 1983. Effect of a nitrification inhibitor on N immobilization and release of 15N from non-exchangeable ammonium and microbial biomass. Can. J. Soil Sci., 63: 167 – 175.

    CAS  Google Scholar 

  61. Keegstra, K., K.W. Talmadge, W.D. Bauer, and P. Albersheim. 1973. The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macro-molecular components. Plant Physiol., 51: 188 – 197.

    PubMed  CAS  Google Scholar 

  62. Kirkwood, S. 1974. Unusual polysaccharides. Ann. Rev. Biochem.,43: 401–418.

    Google Scholar 

  63. Knowles, R., and D.T.H. Chu. 1969. Survival and mineralization and immobilization of 15N-labelledSerratiacells in a boreal forest raw humus. Can. J. Microbial., 15: 223 – 228.

    CAS  Google Scholar 

  64. Ladd, J.N., J.M. Oades, and M. Amato. 1981. Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biol. Biochem., 13: 119 – 126.

    CAS  Google Scholar 

  65. Ladd, J.N., and E.A. Paul. 1973. Changes in enzymic activity and distribution of acid-soluble, amino acidnitrogen in soil during nitrogen immobilization and mineralization. Soil Biol. Biochem., 5: 825 – 840.

    Google Scholar 

  66. Lathwell, D.J., and D.R. Bouldin. 1981. Soil organic matter and soil nitrogen behavior in cropped soils. Trop. Agric. (Trinidad) 58: 341 – 348.

    CAS  Google Scholar 

  67. Linn, D.M. and J.W. Doran. 1984. Aerobic and anaerobic microbial populations in no-till and plowed soils. Soil Sci. Soc. Amer. J.,48: 1267 – 1272.

    Google Scholar 

  68. Lucas, R.E., J.B. Holtman, and L.J. Connor. 1977. Soil carbon dynamics and cropping practices. Pages 333–351inW. Lockeretz, editor. Agriculture and Energy. Academic Press, New York.

    Google Scholar 

  69. Lynch, J.M. 1979. Straw residues as substrates for growth and product formation by soil micro-organisms. Pages 47–56inE. Grossbard, editor. Straw decay and its effect on disposal and utilization. John Wiley, New York.

    Google Scholar 

  70. Malhi, S.S., and M. Nyborg. 1983. Field study of the fate of fall-applied? 5N-labelled fertilizers in three Alberta soils. Agron. J., 75: 71 – 74.

    Google Scholar 

  71. Martel, Y.A., and J.M. Deschenes. 1976. Les effecs de la mise encultive et de la prairie prolongee sur le carbone, l’azote et la structure de quelques sols du Quebec. Can. J. Soil Sci., 56: 373–383.

    CAS  Google Scholar 

  72. Martel, Y.A., and E.A. Paul. 1974. The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Sci. Soc. Am. Proc., 38: 501 – 506.

    CAS  Google Scholar 

  73. McGill, W.B. 1971. Turnover of microbial metabolites during nitrogen mineralization and immobilization in soil. Ph.D. Thesis, University of Saskatchewan, Saskatoon.

    Google Scholar 

  74. McGill, W.B. 1983. Kinetic effects of quality of soil organic matter. Alberta Soil Sci. Workshop Proc. Pages 1 – 9.

    Google Scholar 

  75. McGill, W.B., and P.B. Hoyt. 1977. Effect of forages and rotation management on soil organic matter. Alberta Soil Sci. Workshop Proc., Alberta Inst. of Pedology, University of Alberta Pub. No. G-77–1.

    Google Scholar 

  76. McGill, W.B., C.A. Campbell, J.F. Dormaar, E.A. Paul, and D.W. Anderson. 1981a. Soil organic matter losses. Pages 72–133. Agricultural land: Our disappearing heritage. Alberta Soil Sci. Workshop Proc.

    Google Scholar 

  77. McGill, W.B., H.W. Hunt, R.G. Woodmansee, and J.O. Reuss. 1981b. Phoenix–A model of the dynamics of carbon and nitrogen in grassland soilsinF. E. Clark and T. Rosswall, editors. Terrestrial Nitrogen Cycles. Ecol. Bull. (Stockholm) 33: 49 – 115.

    Google Scholar 

  78. McGill, W.B., H.W. Hunt, R.G. Woodmansee, J.O. Reuss, and K.H. Paustian. 1981c. Formulation, process, controls, parameters and performance of Phoenix: A model of carbon and nitrogen dynamics in grassland soils. Pages 171–191inM.J. Frissel and J.A. Van Veen, editors. Simulation of nitrogen behaviour of soil-plant systems. Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  79. McGill, W.B., J.A. Shields, and E.A. Paul. 1975. Relation between carbon and nitrogen turnover in soil organic fractions of microbial origin. Soil Biol. Biochem., 7: 57 – 63.

    CAS  Google Scholar 

  80. Nelson, D.W., J.P. Martin, and J.O. Ervin. 1979. Decomposition of microbial cells and components in soil and their stabilization through complexing with model humic acid-type phenolic polymers. Soil Sci. Soc. Am. J., 43: 84 – 88.

    CAS  Google Scholar 

  81. Nyhan, J.W. 1975. Decomposition of carbon-14 labelled plant materials in a grassland soil under field conditions. Proc. Soil Sci. Soc. Am., 39: 643 – 648.

    CAS  Google Scholar 

  82. Oades, J.M., and J.N. Ladd. 1977. Bio_chemical properties: Carbon and nitrogen metabolism. Pages 127160inJ.S. Russell and E.L. Greacen, editors. Soil factors in crop production in a semi-arid environment. University of Queensland Press, St. Lucia

    Google Scholar 

  83. O’Brien, B.J., and J.D. Stout. 1978. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol. Biochem.,10: 309 – 317.

    Google Scholar 

  84. Osborne, G.J. 1977. Chemical fractionation of soil nitrogen in six soils from Southern New South Wales. Aust. J. Soil Res., 15: 159 – 165.

    CAS  Google Scholar 

  85. Paul, E.A., C.A. Campbell, D.A. Rennie, and R.J. McCallum. 1964. Investigations of the dynamics of soil humus utilizing carbon dating techniques. Trans. 8th Intern. Congr. Soil Sci., Bucharest. Pages 201–208.

    Google Scholar 

  86. Paul, E.A., and N.G. Juma. 1981. Mineralization and immobilization of nitrogen by microorganisms.InF. E. Clark and T. Rosswall, editors. Terrestrial Nitrogen Cycles. Ecol. Bull. (Stockholm) 33: 179 – 195.

    Google Scholar 

  87. Paul, E.A., and W.B. McGill. 1977. Turnover of microbial biomass, plant residues and soil humic constituents under field conditions. Pages 149–157inSoil Organic Matter Studies, Vol. 1. IAEA, Vienna.

    Google Scholar 

  88. Paul, E.A., and J.A. Van Veen. 1978. The use of tracers to determine the dynamic nature of organic matter. Trans. 11th Intern. Congr. Soil Sci., Edmonton, Alberta. 3: 61 – 102.

    CAS  Google Scholar 

  89. Paul, E.A., and R.P. Voroney. 1980. Nutrient and energy flows through soil microbial biomass. Pages 215-237inD.C. Ellwood, J.N. Hedger, M.J. Latham, J.M. Lynch, and J.H. Slater, editors. Contemporary Microbial Ecology, Academic Press, London.

    Google Scholar 

  90. Pittman, U. 1977. Crop yields and soil fertility as affected by dryland rotations in southern Alberta. Commun. Soil Sci. Plant Analysis. 8: 391 – 405.

    CAS  Google Scholar 

  91. Reddy, K.R., and W.H. Patrick. 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem., 7: 87 – 94.

    CAS  Google Scholar 

  92. Richards, B.N. 1974. Introduction to the soil ecosystem. Longman.

    Google Scholar 

  93. Ridley, A.D., and R.A. Hedlin. 1968. Soil organic matter and crop yields as influenced by the frequency of summerfallowing. Can. J. Soil Sci. 48: 315 – 322.

    CAS  Google Scholar 

  94. Robertson, J.A. 1983. Effect of management on soil organic matter. Pages 30-34. Alberta Soil Sci. Workshop Proc.

    Google Scholar 

  95. Rovira, A., and E. Graecen. 1957-The effect of aggregate disruption on the activity of microorganisms in the soil. Aust. J. Agric. Res., 8:659–673.

    Google Scholar 

  96. Russell, J. S. 1960. Soil fertility changes in long term experimental plots at Kobybolite, South Australia. I. Changes in pH, total nitrogen, organic carbon and bulk density. Aust. J. Agric. Res., 11: 902 – 926.

    Google Scholar 

  97. Sain, P., and F.E. Broadbent. 1977. Decomposition of rice straw in soils as affected by some management factors. J. Environ. Qual., 6: 96 – 100.

    Google Scholar 

  98. Salter, R.M., and T.C. Green. 1933. Factors affecting the accumulation and loss of nitrogen and organic carbon in cropped soils. Agron. J., 25: 622 – 630.

    CAS  Google Scholar 

  99. Sauerbeck, D.R., and M.A. Gonzalez. 1977. Field decomposition of carbon-14 labelled plant residues in various soils of the Federal Republic of Germany and Costa Rica. Soil organic matter studies 2:159–170. IAEA, Vienna.

    Google Scholar 

  100. Schnitzer, M. 1978. Humic substances: Chemistry and reactions. Pages 1–64inM. Schnitzer and S.U. Khan, editors. Soil Organic Matter. Elsevier Scientific Pub. Co., New York.

    Google Scholar 

  101. Shields, J.A., and E.A. Paul. 1973. Decomposition of 14C-labelled plant material under field conditions. Can. J. Soil Sci., 53: 297 – 306.

    CAS  Google Scholar 

  102. Shipley, R. A.,,and R.E. Clark. 1972. Tracer methods forin vivo kinetics. Academic Press, New York.

    Google Scholar 

  103. Shutt, F.T. 1925. Influence of grain growing on the nitrogen and organic matter content of the Western soils of Canada. Dom. of Canada, Dept. of Agric. Bull. N.S. 44.

    Google Scholar 

  104. Siddoway, H. 1963. Effects of cropping and tillage methods on dry aggregate soil structure. Soil Sci. Soc. Am. Proc., 27: 452 – 454.

    Google Scholar 

  105. Sims, J.L., and L.R. Frederick. 1970. Nitrogen immobilization and decomposition of corn residue in soil and sand as affected by residue particle size. Soil Sci., 109: 355 – 61.

    Google Scholar 

  106. Singh, J.S., and S.R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev., 43: 449 – 528.

    CAS  Google Scholar 

  107. Smith, S.J., F.W. Chichester, and D.E. Kissel. 1978. Residual forms of fertilizer nitrogen in field soils. Soil Sci., 125: 165 – 169.

    CAS  Google Scholar 

  108. Sochtig, H., and J. Salfeld. 1977. Dynamics of organic forms of nitrogen in the nitrogen cycle of soil. Soil Organic Matter Studies, Vol. 1:285–292. IAEA, Vienna.

    Google Scholar 

  109. Sorensen, L.H. 1975. The influence of clay on the rate of decay of amino acid metabolites synthesized in soils during decomposition of cellulose. Soil Biol. Biochem., 7: 171 – 177.

    CAS  Google Scholar 

  110. Sorensen, L.H. 1981. Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay. Soil Biol. Biochem., 13: 313 – 321.

    Google Scholar 

  111. Sorensen, L.H., and E.A. Paul. 1971. Transformation of acetate carbon into carbohydrate and amino acid metabolites during decomposition in soil. Soil Biol. Biochem.,3: 173 – 180.

    Google Scholar 

  112. Sowden, F.J. 1977. Distribution of nitrogen in representative Canadian soils. Can. J. Soil Sci., 57: 445 – 456.

    CAS  Google Scholar 

  113. Sowden, F.J., and H.J. Atkinson. 1968. Effect of long-term annual additions of various organic amendments on the organic matter of a clay and a sand. Can. J. Soil Sci., 48: 323 – 330.

    CAS  Google Scholar 

  114. Sowden, F.J., Y. Chen, and M. Schnitzer. 1977. The nitrogen distribution in soils formed under widely differing climatic conditions. Geochim. Cosmochim. Acta,41: 1524 – 1526.

    Google Scholar 

  115. Stevenson, F.J. 1981. Origin and distribution of nitrogen in soil.In F.J. Stevenson, editor. Nitrogen in agricultural soils. Agronomy 22:1–42. Am. Soc. of Agron., Madison, Wis.

    Google Scholar 

  116. Stewart, B.A., L.K. Porter, and D.D. Johnson. 1963. Immobilization and mineralization of nitrogen in several organic fractions of soil. Soil Sci. Soc. Am. Proc., 27: 302 – 304.

    CAS  Google Scholar 

  117. Swift, M.J., O.W. Heal, and J.M. Anderson. 1979. Decomposition in terrestrial ecosystems. University of California Press, Berkeley.

    Google Scholar 

  118. Swift, R.S., and A.M. Posner. 1972. The distribution and extraction of soil nitrogen fraction as a function of soil particle size. Soil Biol. Biochem., 4: 181 – 136.

    CAS  Google Scholar 

  119. Tanchandrphongs, S., and J.M. Davidson. 1970. Bulk density, aggregate stability and organic matter content as influenced by two wheatland and soil management practices. Soil Sci. Soc. Am. Proc., 34: 302 – 305.

    Google Scholar 

  120. Tiessen, H., J. Stewart, and J. Bettany. 1982. Cultivation effects on the amounts and concentration of carbon, nitrogen and phosphorus in grassland soils. Agron. J., 74: 831 – 835.

    Google Scholar 

  121. Tipper, D.J., and A. Wright. 1979. The structure and biosynthesis of bacterial cell walls. Pages 261–426inJ.R. Sokatch and L.N. Ornston, editors. The Bacteria. Vol. VII: Mechanisms of adaptation. Academic Press, New York.

    Google Scholar 

  122. Toogood, J.A., and D.L. Lynch. 1959. Effect of cropping systems and fertilizers on mean weight-diameter of aggregates of Breton plot soils. Can. J. Soil Sci., 39: 151 – 156.

    CAS  Google Scholar 

  123. Trinci, A.P.J. 1978. Wall and hyphal growth. Sci. Prog., Oxf., 65: 75 – 99.

    CAS  Google Scholar 

  124. Van Bavel, C., and F. Schaller. 1950. Soil aggregates, organic matter and yields in a long-term experiment as affected by crop management. Soil Sci. Soc. Am. Proc., 15: 399 – 404.

    Google Scholar 

  125. Van Veen, J.A., W.B. McGill, H.W. Hunt, C.V. Cole, and M. J. Frissel. 1981. Simulation models of the terrestrial nitrogen cycles.InF. E. Clark and T. Rosswall, editors. Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33: 25 – 48.

    Google Scholar 

  126. Van Veen, J.A., and E.A. Paul. 1981. Organic carbon dynamics in grassland soils. 1. Background information and computer simulation. Can. J. Soil Sci., 61: 185 – 201.

    Google Scholar 

  127. Voroney, R.P. 1983. Decomposition of plant residues. Ph.D. Thesis. University of Saskatchewan, Saskatoon.

    Google Scholar 

  128. Voroney, R.P., J.A. Van Veen, and E.A. Paul. 1981. Organic carbon dynamics in grassland soils. 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Can. J. Soil Sci., 61: 211 – 224.

    Google Scholar 

  129. Wieder, R.K., and G.E. Lang. 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecol., 63: 1636 – 1642.

    Google Scholar 

  130. Zeikus, J.G. 1981. Lignin metabolism and the carbon cycle. Adv. Microbial Ecol., 5: 211 – 243.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Juma, N.G., McGill, W.B. (1986). Decomposition and Nutrient Cycling in Agro-Ecosystems. In: Mitchell, M.J., Nakas, J.P. (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Developments in Biogeochemistry, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5173-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5173-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8789-6

  • Online ISBN: 978-94-009-5173-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics