Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 93))

Abstract

The human knee joint is probably one of the most complicated joint structures from a kinematics point of view, and certainly more complex than any technical joint design known. Viewed as a mechanical system it consists of two relatively irregular bearing surfaces, the tibial and femoral condyles, covered with articular cartilage. Interposed between these relatively rigid structures are the compliant menisci. The bones are connected by collageneous fibers organised in a capsule and several ligaments, of which the two cruciate ligaments and the two collateral ligaments are the most important (Figs. 1 and 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kapandji, I.A. The Physiology of the Joints, vol. II ( Churchill Livingstone, Edinburgh, London, New York, 1970).

    Google Scholar 

  2. Lanz, J. and W. Wachsmuth. Praktische Anatomie, Bein und Statik (Springer Verlag, Berlin, Heidelberg, New York, 1972).

    Google Scholar 

  3. Dijk, R. van. The Behaviour of the Cruciate Ligaments in the Human Knee. Dissertation, University of Nijmegen, The Netherlands, 1983.

    Google Scholar 

  4. Crowninshield, R. and R.A. Brand. Kinematics and Kinetics of Gait, CRC Handbook of Engineering in Medicine and Biology, Section B: Instruments and Measurements (CRC-Press, West Palm Beach, FL, 1978) pp. 413–425.

    Google Scholar 

  5. Chao, E.Y., R.K. Laughman, E. Schneider and R.H. Stauffer. Normative Data of Knee Joint Motion and Ground Reaction Forces in Adult Level Walking. J. Biomechanics 16 (1983) pp. 219–233.

    Article  CAS  Google Scholar 

  6. Cappozzo, A. Considerations on Clinical Gait Evaluation. Letter to the Editor, J. Biomechanics 16 (1983) p. 302.

    Article  CAS  Google Scholar 

  7. Walker, P.S. Human Joints and their Artificial Replacement (Charles C. Thomas, Springfield, Illinois, 1977).

    Google Scholar 

  8. Jacobson, K. Gonylaxometry, Acta Orthop. Scand. Suppl. no. 194, 1981.

    Google Scholar 

  9. Frankel, V.H., A.H. Burstein, and D.C. Brooks. Biomechanics of Internal Derangement of the Knee. J. Bone Jt. Surg. 53-A (1971) pp. 945–963.

    Google Scholar 

  10. Hughston, J.C., J.R. Andrews, M.J. Cross, and A. Moschi. Classification of Knee Ligament Instabilities, Parts I and II. J. Bone Jt. Surg. 58-A (1976) pp. 159–179.

    Google Scholar 

  11. Weber, W. and E. Weber. Mechanik der Menschlichen Gehwerkzeuge, Part II, Ueber das Kniegelenk, Gottingen (1836) pp. 161–202.

    Google Scholar 

  12. Meyer, H. Mechanik des Kniegelenkes. Arch. Anat. Physiol und Wissensch. Medicin (1853) pp. 497–547.

    Google Scholar 

  13. Braune, W. and 0. Fischer. Die Bewegungen des Kniegelenks. Abhandl. der Mathem. Phys. Classe der Konigl. Sachs. Gesellsch. der Wissensch. 17 (1891) pp. 77–150.

    Google Scholar 

  14. Fick, R. Anatomie und Mechanik der Gelenke (Gustav Fischer, Jena) Part I (1904)

    Google Scholar 

  15. Fick, R. Anatomie und Mechanik der Gelenke (Gustav Fischer, Jena) Part II (1910)

    Google Scholar 

  16. Fick, R. Anatomie und Mechanik der Gelenke (Gustav Fischer, Jena) Part III (1911)

    Google Scholar 

  17. Strasser, H. Lehrbuch der Muskel- und Gelenkmechanik (Julius Springer, Berlin, 1917).

    Google Scholar 

  18. Goldstein, H. Classical Mechanics (Addison-Wesley, Reading, MA, 1959).

    Google Scholar 

  19. Selvik, G. A Roentgen Stereophotogrammetric Method for the Study of the Kinematics of the Skeletal System. Dissertation, University of Lund, AV-Centralen, Lund, Sweden, 1974.

    Google Scholar 

  20. Markolf, K.L., J.S. Mensch, and H.C. Amstutz. Stiffness and Laxity of the Knee — The Contributions of the Supporting Structures. J. Bone Jt. Surg. 58-A (1976) pp. 583–593.

    Google Scholar 

  21. Suntay, W.J., E.S. Grood, F.R. Noyes, and D.L. Butler. A Coordinate System for Describing Joint Position, Advances in Bioengineering ( ASME, New York, 1978) p. 59.

    Google Scholar 

  22. Chao, E.Y.S. and K.N. An. Perspectives in Measurements and Modeling of Musculo-Skeletal Joint Dynamics, Biomechanics: Principles and Applications (Edited by R. Huiskes, D. H. van Campen and J. R. de Wijn; Martinus Nijhoff, The Hague, Boston, London, 1982) pp. 1–18.

    Google Scholar 

  23. Lewis, J.L. and W.D. Lew. A Note on the Description of Articulating Joint Motion. J. Biomechanics 10 (1977) pp. 675–678.

    Article  CAS  Google Scholar 

  24. Woltring, H.J. On Methodology in the Study of Human Movement, Human Motor Actions —Bernstein Reassessed (Edited by H.T.A. Whiting, North-Holland Publishing Company, Amsterdam, 1983) in press.

    Google Scholar 

  25. Kinzel, G.L. and L.J. Gutkowski. Joint Models, Degrees of Freedom, and Anatomical Motion Measurement. J. Biomech. Engrg. 105 (1983) pp. 55–62.

    Article  CAS  Google Scholar 

  26. Woltring, H.J. On Methodology in the Study of Human Movement, Human Motor Actions —Bernstein Reassessed (Edited by H.T.A. Whiting, North-Holland Publishing Company, Amsterdam, 1983) in press.

    Google Scholar 

  27. Kinzel, G.L., A.S. Hall, and B.M. Hillberry. Measurement of the Total Motion Between Two Body Segments, Part I - Analytical Development. J. Biomechanics 5 (1972) pp. 93–105.

    Article  CAS  Google Scholar 

  28. Kinzel, G.L. et al. Measurement of the Total Motion Between Two Body Segments, Part II - Description and Application. J. Biomechanics 5 (1972) pp. 283–293.

    Article  CAS  Google Scholar 

  29. Dijk, R. van, R. Huiskes, and G. Selvik. Roentgenstereophoto- grammetric Methods for the Evaluation of the Three-Dimensional Kinematic Behaviour and Cruciate Ligament Length Patterns of the Human Knee Joint. J. Biomechanics 12 (1979) pp. 727–731.

    Article  Google Scholar 

  30. Lange, A. de, R. van Dijk, R. Huiskes, G. Selvik, and Th. J. G. van Rens. The Application of Roentgenstereophotogrammetry for Evaluation of Knee-Joint Kinematics in vitro, Biomechanics: Principles and Applications (Edited by R. Huiskes, D.H. van Campen and J.R. de Wijn; Martinus Nijhoff, The Hague, Boston, London, 1982) pp. 177–184.

    Google Scholar 

  31. Lange, A. de, R. van Dijk, R. Huiskes, and Th. J.G. van Rens. Three-Dimensional Experimental Assessment of Knee Ligament Length Patterns in vitro, Proceedings 29th Annual ORS ( Orthopaedic Research Society, Chicago, 1983) p. 10.

    Google Scholar 

  32. Lange, A. de, C. van Leeuwen, J. Kauer, R. Huiskes, and A. Huson. A 3-D Kinematic Evaluation of a Human Wrist-Joint Specimen, 4th General Meeting, European Society of Bioma- terials, Leuven, Belgium, August 31–September 2, 1983 (to be published in proceedings).

    Google Scholar 

  33. Spoor, C.W. and F.E. Veldpaus. Rigid Body Motion Calculated from Spatial Coordinates of Markers. J. Biomechanics 13 (1980) pp. 391–393.

    Article  CAS  Google Scholar 

  34. Woltring, H.J., R. Huiskes, and A. de Lange. Measurement Error Influence on Helical Axis Accuracy in the Description of 3-D Finite Joint Movement in Biomechanics, 1983 Biomechanics Symposium (Edited by S.L. Woo and R.E. Mates, AMD-vol. 56, ASME, New York, 1983) pp. 19–22.

    Google Scholar 

  35. Panjabi, M.M., V.K. Goel, S.D. Walter, and S. Schick. Errors in the Center and Angle of Rotation of a Joint: An Experimental Study. J. Biomech. Engrg. 104 (1982) pp. 232–237.

    Article  CAS  Google Scholar 

  36. Soudan, K., R. van Audekercke, and M. Martens. Methods, Difficulties and Inaccuracies in the Study of Human Joint Kinematics and Patho-Kinematics by the Instant Center Concept, Example: The Knee Joint. J. Biomechanics 12 (1979) pp. 27–33.

    Article  CAS  Google Scholar 

  37. Lewis, J.L. and W;D. Lew. A Method for Locating an Optimal “Fixed” Axis of Rotation for the Human Knee Joint. J. Biomech. Engrg. 100 (1978) pp. 187–193.

    Article  Google Scholar 

  38. Walker, P.S., H. Skoji, and M.J. Erkman. The Rotational Axis of the Knee and its Significance to Prosthesis Design. Clin. Orthop. Rel. Res. 89 (1972) pp. 160–170.

    CAS  Google Scholar 

  39. Smidt, G.L. Biomechanical Analysis of Knee Flexion and Extension. J. Biomechanics 6 (1973) pp. 79–92.

    Article  CAS  Google Scholar 

  40. Harding, M.L. and M.E. Blakemore. The Instant Centre Pathway as a Parameter of Joint Motion — An Experimental Investigation of a Method of Assessment of Knee Ligament Injury and Repair. Engrg. in Medicine 9 (1980) pp. 195–200.

    Article  Google Scholar 

  41. Nietert, M. Das Kniegelenk des Menschen als Biomechanisches Problem. Biomed. Tech. 22 (1977) pp. 13–21.

    Article  CAS  Google Scholar 

  42. Ahmed, A.M., D.L. Burke, 0. Szklar, and G.A. Fraser. An in vitro Study of the Role of the Menisci in the Passive Torsional Stability of the Knee, Proceedings 26th Annual ORS ( Orthopaedic Research Society, Chicago, 1980).

    Google Scholar 

  43. Hsieh, H. and P. Walker. Stabilizing Mechanics of the Loaded and Unloaded Knee Joint. J. Bone Jt. Surg. 58-A (1976) pp. 87–93.

    Google Scholar 

  44. Levy, I.M., P.A. Torzilli, and R.F. Warren. The Effect of Medial Menisectomy on Antero Posterior Knee Motion, Proceedings 28th Annual ORS ( Orthopaedic Research Society, Chicago, 1982).

    Google Scholar 

  45. Wang, C.J. and P.S. Walker. Rotatory Laxity of the Human Knee Joint. J. Bone Jt. Surg. 56-A (1974) pp. 161–170.

    Google Scholar 

  46. Huson, A. Biomechanische Probleme des Kniegelenks. Ortho- padie 3 (1974) pp. 119–126.

    Google Scholar 

  47. Shaw, J.A., M. Eng, and D.G. Murray. The Longitudinal Axis of the Knee and the Role of the Cruciate Ligaments in Controlling Transverse Rotation. J. Bone Jt. Surg. 56-A (1974) pp. 1603–1609.

    Google Scholar 

  48. Girgis, F.G., J.L. Marshall, and A.R.S. Monajen. The Cruciate Ligaments of the Knee Joint. Clin. Orthop. Rel. Res. 106 (1975) pp. 216–231.

    Article  Google Scholar 

  49. Wismans, J. A Three-Dimensional Mathematical Model of the Human Knee Joint. Dissertation, Eindhoven University of Technology, The Netherlands, 1980.

    Google Scholar 

  50. Andriacchi, T.P., R.P. Mikosz, S.J. Hampton, and J.O. Galante. Model Studies of the Stiffness Characteristics of the Human Knee Joint. J. Biomechanics 16 (1983) pp. 23–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Huiskes, R., van Dijk, R., de Lange, A., Woltring, H.J., van Rens, T.J.G. (1985). Kinematics of the Human Knee Joint. In: Berme, N., Engin, A.E., Correia da Silva, K.M. (eds) Biomechanics of Normal and Pathological Human Articulating Joints. NATO ASI Series, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5117-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5117-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8762-9

  • Online ISBN: 978-94-009-5117-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics