Skip to main content

Prediction of the Thermodynamic Behavior of Aqueous Silica in Aqueous Complex Solutions at Various Temperatures

  • Chapter
Chemical Transport in Metasomatic Processes

Part of the book series: NATO ASI Series ((ASIC,volume 218))

Abstract

Experimental solubilities of amorphous silica in several aqueous electrolyte solutions and in aqueous solutions of organic compounds, and theoretical considerations of cavity formation, electrostriction collapse, ion solvation and long- and short-range interaction of the solvated ions with one another permit the calculation of the partial excess free energy and the activity coefficient of aqueous silica. It is shown that in the case of non-dissociated organic compoundwater solutions, the variation of log \( {m_{Si{O_2}}} \) with the reciprocal of the dielectric constant of the solution is described by a single linear equation whatever the nature of the organic compound. For aqueous electrolyte solutions, a specific linear relationship between log \( {m_{Si{O_2}}} \) and the reciprocal of the dielectric constant occurs for each electrolyte. The success of the theoretical equation in reproducing the experimental solubilities of amorphous silica in aqueous solutions of electrolytes and organic compounds supports previous evidence indicating a polar charge distribution in the solvated SiO2 molecule. Our data afford the calculation of the effective local charge of dissolved SiO2 molecules and of the short-range interaction parameters between SiO2 and various ions at temperatures up to 350°C.

The proposed equation of state can be used to calculate the chemical affinity of reactions among SiO2-minerals and complex aqueous solutions. As an application, it is shown that this equation allows an accurate prediction of quartz solubility in aqueous solutions of NaCl at temperatures up to 350°C. It is deduced that in this temperature range, quartz and amorphous silica solubilities are consistent with a simple monomeric model for aqueous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akerlöf G. 1932, “Dielectric constants of some organic solvent-water mixtures at various temperatures”. J. Am. Chem. Soc., 54, pp. 4125–4139.

    Article  Google Scholar 

  2. Anderson G.M. and Burnham C.W. 1965, “The solubility of quartz in supercritical water”. Amer. J. Sci., 263, pp. 494–511.

    Article  Google Scholar 

  3. Arânyi I. and Liszi J. 1981, “Activity coefficient of strong electrolytes in concentrated solution”. Acta Chem. Acad. Scientiarium Hungaricae, 106(4), pp. 325–333.

    Google Scholar 

  4. Bjerrum N. 1929, “Neuere Ansehaungen über Elektrolyte”. Deutsche Chem. Gesell. Ber., 62, pp. 1091–1103.

    Article  Google Scholar 

  5. Born Von M. 1920, “Volumen und Hydratationswarme der Ionen”. Zeitschr. Physik, 1, pp. 45–48.

    Article  Google Scholar 

  6. Chen C-T.A. and Marshall W.L. 1982, “Amorphous silica solubility IV. Behavior in pure water and aqueous sodium choride, sodium sulfate, magnesium chloride, and magnesium sulfate solutions up to 350°C”. Geochim. Cosmochim Acta, 46, pp. 279–287.

    Article  Google Scholar 

  7. Dandurand J.L., Schott J. and Tardy Y. 1982, “Solubilité de la silice dans des solutions aqueuses très concentrées de formamide et de chlorure de lithium. Determination du coefficient d’activite de la silice en solution”. Bull. Mineral., 105, pp. 357–363.

    Google Scholar 

  8. Dandurand J.L. and Schott J. 1985, “Prèvision de la solubilité de la silice dans des eaux de forages petroliers de la Mer du Nord”. In: Interactions Solide-Liquide dans les milieux poreux. J.M. Cases, Ed., pp. 75–89, Technip Paris.

    Google Scholar 

  9. Dandurand J.L. and Schott J. 1986, “Modelisation of the thermodynamic behavior of aqueous silica in aqueous solutions of electrolyte and non-electrolytes”. J. Sol. Chem. (in press).

    Google Scholar 

  10. Debye P. and Mc Aulay J. 1925, “Das elektrische Feld der Ionen und die Neutralsalzwirkung”. Physik. Z., 26, pp. 22–29.

    Google Scholar 

  11. Duedall I. W., Dayal R. and Willey J. D. 1976, “The partial volume of silicic acid in 0.725m NaC1”. Geochim. Cosmochim. Acta, 40, pp. 1185–1189.

    Article  Google Scholar 

  12. Fournier R.O. 1979, “Discussion-calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures”. Amer. J. Sci., 279, pp. 1070–1078.

    Article  Google Scholar 

  13. Fournier R.O. 1983, “A method of calculating quartz solubilities in aqueous sodium chloride solutions”. Geochim. Cosmochim. Acta, 47, pp. 579–586.

    Article  Google Scholar 

  14. Fournier R.O. and Potter R.W. II, 1982, “An equation correlating the solubility of quartz in water from 25° to 900°C at pressure up to 10000 bars”. Geochim. Cosmochim. Acta, 46, pp. 1969–1978.

    Article  Google Scholar 

  15. Fournier R.O., Rosenbauer R.J. and Bischoff J.L. 1982, “The solubility of quartz in aqueous sodium chloride solutions at 350°C and 180 to 500 bars”. Geochim. Cosmochim. Acta, 46, pp. 1975–1978.

    Article  Google Scholar 

  16. Fournier R.O. and Marshall W.L. 1983, “Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water”. Geochim. Cosmochim. Acta, 47, pp. 587–596.

    Article  Google Scholar 

  17. Franck E.U. 1956, “Zur Löslichkeit fester Stoffe in verdichten Gasen”. Zeitschr. Physics Chemie, 6, pp. 345–355.

    Article  Google Scholar 

  18. Ganeyev I.G. 1975, “Solubility and crystallization of silica in chloride”. Doklady Akademia Nauk. SSSR., 224, pp. 248–250.

    Google Scholar 

  19. Gottlob D. 1976, In: Water, a Comprehensive Treatise, vol. III, F. Franks, Ed., pp. 401–431, Plenum, New York. (unpublished data).

    Google Scholar 

  20. Guggenheim E.A. 1935, “The specific thermodynamic properties of aqueous solutions of strong electrolytes”. Philos. Mag., 19, pp. 588–643.

    Google Scholar 

  21. Handbook of Chemistry and Physics, 61st edition (1980). CRC Press.

    Google Scholar 

  22. Hasted J.B. 1976, “Dielectric properties”. In: Water, a Comprehensive Treatise, Vol. II,F. Franks Ed., pp. 405–458. Plenum, New York.

    Google Scholar 

  23. Hasted J.B., Ritson D.M. and Collie C.H. 1948, “Dielectric properties of aqueous ionic solutions”. Parts I and II. Jour. Chem. Physics, 16, pp. 1–21.

    Article  Google Scholar 

  24. Helgeson H.C. and Kirkham D.H. 1974, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent”. Amer. J. Sci., 274, pp. 1089–1198.

    Article  Google Scholar 

  25. Helgeson H.C. and Kirkham D.H. 1976, “Theoretical prediction of the thermodynamic properties of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution”. Amer. Jour. Sci., 276, pp. 97–240.

    Article  Google Scholar 

  26. Helgeson H.C., Kirkham D.H. and Flowers G.C. 1981, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures;. IV calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb”. Amer. J. Sci., 281, pp. 1249–1516.

    Article  Google Scholar 

  27. Hemley J.J., Montoya M. and Luce R.W. 1980, “Equilibria in the system A12O3-SiO2-H2O and some general implications for alteration/mineralization processes”. Econ. Geol., 75, pp. 210–228.

    Article  Google Scholar 

  28. Iler R.K. 1979, The Chemistry of Silica, 866 p., John Wiley and sons, New York.

    Google Scholar 

  29. Kirkwood J.G. 1939, “The dielectric polarization of polar liquids”. Jour. Chem. Physics, 7, pp. 911–919.

    Article  Google Scholar 

  30. Khitarov N.I. 1956, “The 400° isotherm for the system H20-SiO2Amer. J. Sci., 260, pp. 501–521.

    Google Scholar 

  31. Kitahara S. 1960, “The solubility of quartz in water at high temperatures and high pressures”. Rev. Phys. Chem. Japan, 30, pp. 109–114.

    Google Scholar 

  32. Kitahara S. 1960, “The solubility equilibrium and the rate of solution of quartz in Water at high temperatures and high pressures”. Rev. Phys. Chem. Japan, 30, pp. 122–130.

    Google Scholar 

  33. Kitahara S. and Asano T. 1973, “Dissolution of calcined silica gel powders in methanol-water solution at 100–200°C”. Bull of Fukuoka Univ. of Education, 23, part III, pp. 53–57.

    Google Scholar 

  34. Kruyt H.R. and Robinson C. 1926, “On lyotropy”. Konink. Akad. Van Wetensch. Amsterdam (Proceedings of the Sect. of Sciences), 29 pp. 1244–1250.

    Google Scholar 

  35. Lenher V. and Merill H.B. 1965, In: Solubilities Inorganic and Metal-Organic Compounds, Vol. II, W.K. Linke Ed. American Chemical Society, Washington, pp. 1452–1453.

    Google Scholar 

  36. Long F.A. and Mc Devit W.F. 1952, “Activity coefficient of non electrolytes solutes in aqueous salt solution”. Chem. Rev., 51, pp. 119–169.

    Article  Google Scholar 

  37. Marshall W.L. 1980, “Amorphous silica solubility. I. Behavior in aqueous sodium nitrate solutions: 25–300°C, 0–6 molal”. Geochim. Cosmochim. Acta, 44, pp. 907–913.

    Article  Google Scholar 

  38. Marshall W.L. 1980, “Amorphous silica solubilities. III. Activity coefficient relations and prediction of solubility behavior in salt solutions, 0–350°C”. Geochim. Cosmochim. Acta, 44, pp. 925–931.

    Article  Google Scholar 

  39. Marshall W.L. and Warakomski J.M. 1980, “Amorphous silica solubilities. II. Effect of aqueous salt solutions at 25°C”. Geochim. Cosmochim. Acta, 44, pp. 915–924.

    Article  Google Scholar 

  40. Marshall W.L. and Chen C-T. A. 1982, “Amorphous silica solubility. V. Predictions of solubility behavior in aqueous mixed electrolyte solutions to 300°C”. Geochim. Cosmochim. Acta, 46, pp. 289–291.

    Article  Google Scholar 

  41. Pannetier G. and Souchay P. 1964, Chimie Générale, Cinétique Chimique, 365 p., Masson Ed., Paris.

    Google Scholar 

  42. Pitzer K.S. 1973, “Thermodynamic of electrolytes. I. Theoretical basis and general equations”. J. Phys. Chem., 77, pp. 268–277.

    Article  Google Scholar 

  43. Pitzer K.S. 1981, “Characteristics of very concentrated aqueous solutions”. In: Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, D.T. Rickard and F.E. Wickman Ed., Pergamon Press, New York, pp. 249–272.

    Google Scholar 

  44. Pitzer K.S. and Brewer L. 1979, “Simplification of thermodynamic calculations through dimensionless entropies”. High Temps Sci., 11, pp. 49–53.

    Google Scholar 

  45. Pottel R. 1973, “Dielectric properties”. In: Water, a Comprehensive Treatise, Vol. III, F. Franks, Ed., pp. 401–431, Plenum, New York.

    Google Scholar 

  46. Randall M. and Failey C.F. 1927, “The activity coefficients of gases in aqueous salt solutions”. Chem. Rev. 4, pp. 271–290.

    Article  Google Scholar 

  47. Randall M. and Failey C.F. 1927, “The activity coefficients of nonelectrolytes in aqueous salt solutions from solubility measurements. The salting-out order of the ions”. Chem. Rev., 4, pp. 285–290.

    Article  Google Scholar 

  48. Randall M. and Failey C.F. 1927, “The activity coefficient of the undissociated part of weak electrolytes”. Chem. Rev., 4, pp. 291–318.

    Article  Google Scholar 

  49. Scatchard G. 1936, “Concentrated solutions of strong electrolytes”. Chem. Rev., 19, pp. 309–327.

    Article  Google Scholar 

  50. Setchenow M. 1892, “Action de l’acide carbonique sur les solutions des sels à acides forts”. Ann. Chim. Phys., (6) 25, pp. 226–270.

    Google Scholar 

  51. Walther J.V. and Helgeson H.C. 1977, “Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures”. Amer. J. Sci., 277, pp. 1315–1351.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Schott, J., Dandurand, JL. (1987). Prediction of the Thermodynamic Behavior of Aqueous Silica in Aqueous Complex Solutions at Various Temperatures. In: Helgeson, H.C. (eds) Chemical Transport in Metasomatic Processes. NATO ASI Series, vol 218. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4013-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4013-0_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8280-8

  • Online ISBN: 978-94-009-4013-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics