Skip to main content

Moment Closure for Thermal Convection: A Viable Approach?

  • Chapter
The Internal Solar Angular Velocity

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 137))

  • 149 Accesses

Abstract

We examine here the usefulness of two-point moment closures as a potential tool in computing turbulent convection, considering the eventual application to stellar convection. Confining our attention to the Boussinesq limit, we first present a formal discussion of how such procedures are constructed, and then discuss—briefly—how the complex two-point formalism may be used as the basis for much simpler single-point closures of the sort used in engineering applications. Noting that the underlying assumption of the closure is a form of randomness or near Gaussianity, we discuss examples of systems related to convection, and the extent to which this assumption is validated for these systems. We examine three potential problems for such application drawn from numerical simulations and experiments: (1) counter-gradient transport, (2) the apparent failure of numerical simulations to adhere to closure scaling at low Prandtl numbers, and (3) the appearance of large-scale structures in large Prandtl number convection and simple one-dimensional models.

The National Center for Atmospheric Research is sponsored by the National Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G.K., Howells, I. D., and Townsend A. A., 1959: Small-scale variations of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity. J. Fluid Mech., 5, 134–139.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Dannevik, W., 1985: Two-point closure study of covariance budgets for turbulent Rayleigh-Bernard convection, National Center for Atmospheric Research, NCAR/Ct-85.

    Google Scholar 

  • Dannevik, W., Yakhot, V., and Orszag, S.A., 1987: Analytical theories of turbulence and the ε expansion. Preprint.

    Google Scholar 

  • Deardorff, J. W., 1966: The counter gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Set., 23, 503–506.

    Article  ADS  Google Scholar 

  • Deardorff, J. W., 1973: The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. Applied Mechanics and Fluids Engineering Conference, Atlanta, Ga., June 20–22, 1973. 423–440.

    Google Scholar 

  • Deardorff, J. W., 1982: Numerical investigation of neutral and unstable planetary boundaries. J. Atmos. Sci., 29, 91–115.

    Article  ADS  Google Scholar 

  • Gibson, C. H., 1968: Fine structure of scalar fields mixed by turbulence. I. Zero-gradient points and minimal-gradient surfaces. Phys. Fluids, 11, 2316–2327.

    Article  ADS  Google Scholar 

  • Herring, J. R., 1973: Statistical turbulence theory and turbulence phenomenology. In Proc. Langley Working Conf. on Free Turbulent Shear Flows. NASASP321, Langley Research Center, Langley, VA (available from NTIS as N73-2815415GA).

    Google Scholar 

  • Herring, J. R., and Kraichnan, R. H., 1979: A numerical comparison of velocity-based and strain-based Lagrangian-history turbulence approximations. J. Fluid Mech., 91, 581–597.

    Article  MATH  ADS  Google Scholar 

  • Herring, J. R., and Jackson, S., 1984: Thermal convection: Numerical experiments near the onset to turbulence and the statistical theory of turbulence. In Turbulence and Chaotic Phenomena in Fluids, Elsevier Science Publishers, T. Tatsumi, Ed., B. V. (North-Holland), IUTAM, pp. 111–116.

    Google Scholar 

  • Herring, J. R., and Wyngaard, J. C., 1987: Convection with a first-order chemically reactive passive scalar. To appear in Turbulent Shear Flows, 5, L. S. J. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw, eds. (Springer-Verlag).

    Google Scholar 

  • Howard, L. N., and Krishnamurti, R., 1984: Large-scale flow in turbulent convection turbulence and chaotic phenomena in fluids. In Proceedings of the International Symposium on Turbulence and Chaotic Phenomena in Fluids, The International Union of Theoretical and Applied Mechanics. (Elsevier Science Publishers B.V.) T. Tatsumi, Ed., pp. 535–542.

    Google Scholar 

  • Hyman, J. M., Nicolaenko, B., and Zaleski, S., 1986: Order and complexity in the Kuramoto Sivashinsky model of weakly turbulent interfaces. Preprint.

    Google Scholar 

  • Kerr, R. M., 1987: Kolmogorov and scalar-spectral regimes in numerical turbulence. NASA Technical Memorandum 867699.

    Google Scholar 

  • Kraichnan, R. H., 1961: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech., 5, 497–543.

    Article  ADS  MathSciNet  Google Scholar 

  • Kraichnan, R. H., 1964: Lagrangian-history closure approximation for turbulence, Phys. Fluids, 8, 575–598.

    Article  ADS  MathSciNet  Google Scholar 

  • Kraichnan, R. H., 1985: Decimated amplitude equations in turbulence dynamics. Theoretical Approaches to Turbulence, Appl. Math. Sci., 58, (Springer-Ver lag), New York, Berlin, Heidelberg, Tokyo. D. L. Dwoyer, M. Y. Hussaini, and R. G. Voigt, Eds., pp. 91–136.

    Chapter  Google Scholar 

  • Leslie, D. C., 1973: Developments in the Theory of Turbulence, Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Lumley, J. L., 1978: Computational Modeling of Turbulent Flows. Advances in Applied Mechanics, Vol. 18, Academic Press.

    Google Scholar 

  • Millionshchikov , 1941: Theory of homogeneous isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, No. 9, 611–614.

    Google Scholar 

  • Moore, D. R., and N. O. Weiss, 1973: Two-dimensional Rayleigh-Bernard convection. J. Fluid Mech., 58, 289–312.

    Article  MATH  ADS  Google Scholar 

  • Schumann, U., 1977: Readability of Reynolds stress turbulence models. Phys. Fluids, 20, 721–725.

    Article  MATH  ADS  Google Scholar 

  • Spiegel, E. A., 1963: A generalization of the mixing-length theory of turbulent convection. Astrophys. J., 138, 216–225.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Spiegel, E. A., 1966: Energy Transport by Turbulent Convection. Stellar Evolution, R. F. Stein and A. G. W. Cameron, eds., Pleunum Press, pp. 143–174.

    Google Scholar 

  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. Roy. Lond. Math. Soc., 20, 196.

    Article  MATH  Google Scholar 

  • Yamada, T., and Y. Kuramoto, 1976: A reduced model showing chemical turbulence. Prog. Theor. Phys., 56, 681–683.

    Article  ADS  MathSciNet  Google Scholar 

  • Yakhot, V., and S. A. Orszag, 1987: Renormalization Group Analysis of Turbulence I. Basic Theory Preprint.

    Google Scholar 

  • Yoshizawa, A., 1980: Statistical theory for Boussinesq turbulence. J. Phys. Soc. Japan, 48, 647–652.

    Article  ADS  Google Scholar 

  • Zippelius, A., and E. D. Siggia, 1982: Disappearance of stable convection between free-slip boundaries. Phys. Rev., A26, 1788–1790.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Herring, J.R. (1987). Moment Closure for Thermal Convection: A Viable Approach?. In: Durney, B.R., Sofia, S. (eds) The Internal Solar Angular Velocity. Astrophysics and Space Science Library, vol 137. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3903-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3903-5_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8233-4

  • Online ISBN: 978-94-009-3903-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics