Skip to main content

Part of the book series: Developments in Biomechanics ((DEBI,volume 3))

  • 45 Accesses

Abstract

The circulatory system is a closed loop passing the heart twice. The blood, returned from the body, enters the right ventricle via the right atrium. At a relatively low pressure (approx. 30 mmHg) blood is pumped into the lungs at a rate in the order of 5 liters per minute. The blood returning from the lungs is collected in the left atrium, from where it flows into the left ventricle during each diastolic phase. The left ventricle is a powerful pump having a wall significantly thicker than the right ventricle. The latter property enables the left ventricle to generate a relatively high pressure (approx. 130 mmHg) at the same flow rate as the right ventricle. After passing the aortic valve, the blood enters the arterial system. The compliance of this system enables uptake of the volume, ejected by the left ventricle during the relatively short period of systole. Because in arteries inertial forces overrule viscous forces, after each heartbeat a pressure-flow wave is guided down to the smallest arteries. At the level of arterioles (diameters 15–100 μm) viscous forces exceed inertial forces, causing attenuation of the pressure wave. At this level flow regulation takes pace by controlling vessel diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arts T, Meerbaum S, Reneman RS, Corday E: Torsion of the canine left ventricle during the ejection phase in the intact dog. Cardiovasc Res 18: 183–193, 1984.

    Article  Google Scholar 

  2. Arts T, Reneman RS: Measurement of deformation of canine epicardium in vivo during cardiac cycle. Am J Physiol 239: H432-H437, 1980.

    Google Scholar 

  3. Arts T, Reneman RS: Interaction between intramyocardial pressure and myocardial contraction. J Biomech Eng 107: 51–56, 1985.

    Article  Google Scholar 

  4. Arts T, Veenstra PC, Reneman RS: A model of the mechanics of the left ventricle. Ann Biomed Engng 7: 299–318, 1979.

    Article  Google Scholar 

  5. Arts T, Veenstra PC, Reneman RS: Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am J Physiol 243: H379-H390, 1982.

    Google Scholar 

  6. Bache RJ, Schwartz JS: Myocardial bloodflow during excercise after gradual coronary occlusion in the dog. Am J Physiol 245: H131-H138, 1983.

    Google Scholar 

  7. Beyar R, Sideman S: A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity. Circ Res 55: 358–375, 1984.

    Article  Google Scholar 

  8. Bogen DK, Rabinowitz SA, Needleman A, McMahon TA, Abelman WH: An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ Res 47: 728–741, 1980.

    Article  Google Scholar 

  9. Chadwick RS: mechanics of the left ventricle. Biophys J 39: 279–288, 1982.

    Article  Google Scholar 

  10. Downey JB, Kirk ES: Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36: 753–760, 1975.

    Article  Google Scholar 

  11. Edman KAP, Mulieri LA, Scubon Mulieri B: Non-hyperbolic force velocity relationship in single muscle fibers. Acta Physiol Scand 98: 143–156, 1976.

    Article  Google Scholar 

  12. Falsetti HL, Mates RE, Grant C, Greene DG, Bunnell IL: Left ventricular wall stress calculated from one plane cineangiography — An approach to force-velocity analysis in man. Circ Res 26: 71–83, 1970.

    Article  Google Scholar 

  13. Feigl EO, Fry DL: Intramural myocardial shear during the cardiac cycle. Circ Res 14: 536–540, 1964.

    Article  Google Scholar 

  14. Feigl EL, Simon GA, Fry DL: Auxotonic and isometric cardiac force transducers. J Appl Physiol 23: 597–600, 1967.

    Google Scholar 

  15. Fenton TR, Cherry JM, Klassen GA: Transmural myocardial deformation in the canine left ventricular wall. Am J Physiol 235: H523–H530, 1978.

    Google Scholar 

  16. Fung YC: Mathematical representation of the mechanical properties of the heart muscle. J Biomech 3: 381–404, 1970.

    Article  Google Scholar 

  17. Fung YC, Zweifach BW, Intaglietta M: Elastic environment of the capillary bed. Circ Res 19: 441–461, 1966.

    Article  Google Scholar 

  18. Gallagher KP, Osakada G, Hess OM, Koziol JA, Kemper WS, Ross J: Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ Res 50: 352–359, 1982.

    Article  Google Scholar 

  19. Garrison JB, Ebert Wl, Jenkins RE, Yionoulis SM, Malcom H, Heyler GA, Shoukas AA, Maugham WL, Sagawa K: Measurement of three-dimensional positions and motions of large number of spherical radioopaque markers from biplane cine-angiograms. Comp Biomed Res 15: 76–96, 1982.

    Article  Google Scholar 

  20. Henderson AH, Ocken E, Brutsaert DL: A reapraisal of force-velocity measurements in isolated heart muscle preparations. Eur J Cardiol. 1: 105–118, 1973.

    Google Scholar 

  21. Henderson Y: The volume curve of the ventricles of the mammalian heart and the significance of this curve in respect to the mechanics of the heart beat and the filling of the ventricles. Am J Physiol 16: 325–367, 1906.

    Google Scholar 

  22. Hill AV: The transformation of energy and mechanical work of muscle. Proc Physiol Soc 51: 1–18, 1939.

    Article  Google Scholar 

  23. Hort W: Makroskopische und mikrometrische Untersuchungen am Myocard verschieden stark gefuellter linker Kammern. Vir-chows Arch (Pathol Anat) 33: 523–564, 1960.

    Article  Google Scholar 

  24. Huismans RM, Sipkema P, Westerhof N, Elzinga G: Comparison of models used to calculate left ventricular wall force. Med & Biol Eng & Comput 18: 133–144, 1980.

    Article  Google Scholar 

  25. Janz RF, Grimm AF: Finite element model for the mechanical behavior of the left ventricle. Circ Res 30: 224–252, 1972.

    Article  Google Scholar 

  26. Kim HC, Min BG, Lee MM, Seo JD, Lee YW, Han MC: Estimation of local cardiac wall deformation and regional wall stress from biplane coronary cineangiograms. IEEE Trans BME 32: 503–511, 1985.

    Article  Google Scholar 

  27. Lab M, Woollard KV: Monophasic action potentials, electrocardiograms and mechanical performance in normal and ischemic epicardial segments of the pig ventricle in situ. Car-diovasc Res 12: 555–565, 1978.

    Article  Google Scholar 

  28. Pao YC, Ritman EL, Wood EH: Finite-element analysis of left ventricular myocardial stresses. J Biomech 7: 469–477, 1974.

    Article  Google Scholar 

  29. Patterson SW, Pieper H, Starling H: The regulation of the heart beat. J Physiol 48: 465, 1914.

    Article  Google Scholar 

  30. Pollack GH, Krueger JW: Sarcomere dynamics in intact cardiac muscle. Eur J Cardiol 4 (suppl): 53–65, 1976.

    Google Scholar 

  31. Prinzen FW, Arts T, van der Vusse GJ, Coumans WA, Reneman RS: Gradients in fiber shortening and metabolism across the ischemic left ventricular wall. Am J Physiol 250: H255-H264, 1986.

    Google Scholar 

  32. Prinzen FW, Arts T, van der Vusse GJ, Reneman RS: Fiber shortening in the inner layers of the left ventricular wall as assessed from epicardial deformation during normoxia and ischemia. J Biomech 17: 801–812, 1984.

    Article  Google Scholar 

  33. Prinzen TT, Arts T, Prinzen FW, Reneman RS: Mapping of epicardial deformation using a videoprocessing technique. J Biomech 19: 263–274, 1986.

    Article  Google Scholar 

  34. Rushmer RF, Franklin DL, Ellis RM: Left ventricular dimensions recorded by sonocardiometry. Circ Res 4: 684–688, 1956.

    Article  Google Scholar 

  35. Sandler H, Dodge HT: Left ventricular tension and stress in man. Circ Res 13: 91–104, 1963.

    Article  Google Scholar 

  36. Sonnenblick EH, Spiro D, Cottrell TS: Fine structural changes in heart muscle in relation to the length tension curve. Physiology 49: 193–200, 1963.

    Google Scholar 

  37. Spaan JAE: Coronary diastolic pressure-flow relation and zero flow pressure explained and on the basis of intramyocardial compliance. Circ Res 56: 293–309, 1985.

    Article  Google Scholar 

  38. Spaan JAE, Breuls NPW, Laird JD: Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49: 584–593, 1981.

    Article  Google Scholar 

  39. Streeter DD, Hanna WT: Engineering mechanics for successive states in canine left ventricular myocardium: II. Fiber angle and sarcomere length. Circ Res 33: 656–664, 1973.

    Article  Google Scholar 

  40. Ter Keurs HEDJ: Calcium and contractility. In: Cardiac Metabolism, ed. Drake AJ, Noble MIM, John Wiley, 73–99, 1983.

    Google Scholar 

  41. Van den Horn GJ, Westerhof N, Elzinga G: Optimal power generation by the left ventricle. Circ Res 56: 252–261, 1985.

    Article  Google Scholar 

  42. Westerhof N, Elzinga G, Van den Bos GC: Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree. MEd Biol Eng 11: 710–722, 1973.

    Article  Google Scholar 

  43. Wood RH: A few applications of a physical theorem to membranes in the human body in a state of tension. J Anat Physiol 26: 362–370, 1892.

    Google Scholar 

  44. Yin FCP: Ventricular Wall Stress. Circ Res 49: 829–842, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Arts, T., Reneman, R.S. (1987). Cardiovascular Biomechanics. In: Bergmann, G., Kölbel, R., Rohlmann, A. (eds) Biomechanics: Basic and Applied Research. Developments in Biomechanics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3355-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3355-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8007-1

  • Online ISBN: 978-94-009-3355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics