Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 29))

Abstract

While commenting about the state of quantum gravity, Lee Smolin has said in 1979:1 “... while there has been a lot of interesting and imaginative work ... nothing which could be definitely called progress has been accomplished in this time — say, two decades ...”. In the course of this chapter, I will try to convince you that the situation remains just as bad today.

What is that, Lord, which being known, all these become known? — Mundako Upanishad.

‘A dream-child moving through a land of wonders wild and new, In friendly chat with a bird or beast-And half believe it true.’ — C. L. Dodgson (Lewis Caroll)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. L. Smolin (1979), What is the problem of quantum gravity?, preprint based on part 1 of the thesis (Harvard University).

    Google Scholar 

  2. These questions, of course, are discussed in literature. Some good reviews of quantum gravity are by C. J. Isham, in Quantum Gravity I & II (eds. C. J. Isham, R. Penrose and D. W. Sciama; C.U.P., 1975,1980); J. A. Wheeler in Relativity, Groups and Topology (eds. B. S. De Witt and C. De Witt; Gordon and Breach, 1964); J. Hartle in The Very Early Universe (eds. G. W. Gibbons, S. W. Hawking, S. T. C. Silkos; Cambridge, 1983) and the various articles in Quantum Theory of Gravity (ed. S. Christensen, Adam Hilger, 1984).

    Google Scholar 

  3. E.g. G.’ t Hooft (1973), Nucl. Phys. B62, 444; S. Deser and P. Van Nieuwenhuizen (1974), Phys. Rev. D10, 401, 411.

    Article  ADS  Google Scholar 

  4. T. Padmanabhan, T. R. Seshadri and T. P. Singh (1985) J. Mod. Phys. (to appear); K. Eppeley and E. Hannah (1977), Found. Phys. 7, 51; D. N. Page and C. D. Geilker (1981), Phys. Rev. Letts. 47, 979.

    Google Scholar 

  5. There are many good reviews on these subjects; for example, see P. Van Nieuwenhuizen (1983) Relativity, Groups and Topology, II’ (eds. B. S. De Witt and R. Stora; North-Holland); J. Scherk (1975), Rev. Mod. Phys. 47, 123; J. H. Schwarz (1982), Phys. Rep. 89, 223.

    Google Scholar 

  6. Some limited application of nonperturbative techniques in quantum gravity can be found in T. E. Tomboulis, Phys. Letts. 70B(1977), 361; 97B (1980), 77; L. Smolin, Nucl. Phys. B208(1982), 439; S. Weinberg (1979) in General Relativity — An Einstein Centenary Survey (eds. S. W. Hawking and W. Israel; Cambridge).

    Google Scholar 

  7. For classical and quantum description of homogeneous cosmologies, see M. Ryan, Hamiltonian Cosmology (Springer, 1972); M. A. H. MacCallum in General RelativityAn Einstein Survey (Cambridge, 1979); C. W. Misner in Magic without Magic (eds. J. Klauder; Freeman, 1972).

    Google Scholar 

  8. For detailed discussion of ‘minisuperspace’, see C. W. Misner, op. cit (ref. [7]) and B. S. De Witt (1967) Phys. Rev. 162, 1195.

    Google Scholar 

  9. This approach was initiated by J. V. Narlikar in (1979), M. N. Roy. Astron. Soc. 183, 159; Gen. Rel. Grav. (1979), 10, 883 and was developed further by the author; T. Padmanabhan (1982), PhD thesis.

    ADS  Google Scholar 

  10. It is easy to show that null geodesies remain null geodesies under conformal transformations, making the light cones conformally invariant. The converse is somewhat more difficult to prove but can be done.

    Google Scholar 

  11. Coordinate transformations expressing k = ± 1 FRW Universes in the conformally flat form are given in, e.g., F. Hoyle and J. V. Narlikar (1974) Action at a Distance in Physics and Cosmology (Freeman).

    Google Scholar 

  12. A down-to-earth discussion of path integrals can be found in R. P. Feynman and A. R. Gibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965). A flavour of more advanced topics can be found in L. S. Shulman, Techniques and Applications of Path Integration (Wiley, 1981).

    Google Scholar 

  13. For many of the details in this section and the next two, see J. V. Narlikar and T. Padmanabhan (1983) Phys. Repts. 100, 152 and T. Padmanabhan (1983) Phys. Rev. D28, 745.

    Article  MathSciNet  ADS  Google Scholar 

  14. An excellent discussion of this and related issues can be found in K. Kuchar, Canonical quantisation of gravity, in Relativity, Astrophysics and Cosmology (ed. W. Israel; Reidel, 1973); also see J. Hartle and K. Kuchar in Quantum Theory of Gravity, op. cit. (ref. [2]). The problem of separating temporal information from dynamical information is stressed in Kuchar’s article. For a more recent discussion, see T. Banks (1985), Nucl. Phys. B249, 332.

    Google Scholar 

  15. The ‘usual’ conclusion drawn is that “time is a semi-classical concept which cannot be extended... into the domain of quantum gravity”. See, e.g., T. Banks op. cit. [14], p. 336.

    Google Scholar 

  16. For previous discussion of this topic, see Hawking’s contribution in General Relativity — An Einstein Survey, op. cit. (e.g. ref. [6]).

    Google Scholar 

  17. This should be clear from the Schrödinger approach to field quantization described in Appendix 1. Also see J. Greensite and M. B. Halpern, Nucl. Phys. B242 (1984) 167.

    Article  MathSciNet  ADS  Google Scholar 

  18. This prescription is discussed for, e.g., in ref. [16].

    Google Scholar 

  19. The Wheeler-De Witt equation is discussed in many places. Particularly useful articles are the ones by Wheeler (1964; cited in ref. [2]), Kuchar (cited in ref. [14]) and D. R. Brill and R. H. Gowdy, Rep. Prog. Phys. (1970), 33, 413.

    Article  ADS  Google Scholar 

  20. The role of observer in quantum cosmology is not clear. See, e.g., W. Patton and J. A. Wheeler in Quantum Gravity I, op. cit. (ref. [2]); T. Banks, op. cit. (ref. [14]).

    Google Scholar 

  21. D. R. Brill and R. H. Gowdy, Rep. Prog. Phys. (1970), 33, 413; C. W. Misner, op. cit. (ref. [7]); K. Kuchar, op. cit. (ref. [14]).

    Article  ADS  Google Scholar 

  22. S. Fulling (1973), Phys. Rev. D7, 2850; P. C. W. Davies (1975), J. Phys. 8, 365; W. G. Unruh (1976), Phys. Rev. D14, 870; T. Padmanabhan (1982), Ap. Sp. Sci. 83, 247; Class. Q. Grav. (1984), 2, 117.

    ADS  Google Scholar 

  23. See papers cited in ref. [13], and Phys. Letts. (1982), 87A, 226; (1983) 15, 435.

    Google Scholar 

  24. The comparison between the singular behaviour of hydrogen atom and the universe was first suggested by Wheeler. It is explored systematically in papers cited above (ref. [23]).

    Google Scholar 

  25. See, e.g., J. V. Narlikar (1979), M. N. Roy. Astron. Soc. 183, 159.

    ADS  Google Scholar 

  26. J. V. Narlikar (1984), Found. Phys. 14, 443; J. V. Narlikar (1981), Found. Phys., 11, 473; T. Padmanabhan and J. V. Narlikar (1982), Nature 295, 677.

    Article  ADS  Google Scholar 

  27. See for, e.g., the papers in ref. [14].

    Google Scholar 

  28. The application of QSG is not limited to FRW models; for the application of QSG to other cases, see T. Padmanabhan (1982), Gen. Rel. Grav. 14, 549; Int. J. Theo. Phys. (1983), 22,1023 and Class. Q. Grav. (1984), 1, 149.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. This semiclassical approximation is developed in T. Padmanabhan (1983), Phys. Rev. D28, 745; Detailed application to cosmology can be found in T. Padmanabhan (1983), Phys. Rev. D28, 756.

    MathSciNet  ADS  Google Scholar 

  30. T. Padmanabhan (1983), Gen. Rel. Grav. 15, 435; Int. J. Theo. Phys. (1983), 22, 1023.

    Article  MathSciNet  ADS  Google Scholar 

  31. The analysis here is based on T. Padmanabhan (1983) Phys. Letts. 93A, 116. Creating the universe is a very popular pastime of quantum cosmologists, see, e.g., R. Brout et. al., Nucl. Phys. (1980), 170, 228; L. Lindley, Nature (1981), 291, 391; A. Vilenkin (1983), Phys. Rev. D27, 2848.

    Article  ADS  Google Scholar 

  32. T. Padmanabhan (1984), Phys. Letts. 104A, 196.

    Article  MathSciNet  ADS  Google Scholar 

  33. This is similar to the vacuum functional in electromagnetism and is derived in T. Padmanabhan (1983) Phys. Letts. 96A, 110. For a detailed discussion of Equation (105), see Gen. Rel. Grav. (1985), 17, 215.

    Article  ADS  Google Scholar 

  34. E.g., see B. De Witt, Phys. Rev. Letts. (1964), 13, 114; C. J. Isham, A. Salam, and J. Strathdee (1971), Phys. Rev. D3, 1805.

    Article  ADS  Google Scholar 

  35. T. Padmanabhan (1985), Ann. Phys. 165, 38(1985); Current Science (1985), 54, 912.

    Article  MathSciNet  ADS  Google Scholar 

  36. J. Hartle and S. W. Hawking (1983), Phys. Rev. D28, 2960; S. W. Hawking (1984), Nucl. Phys. B239, 257.

    MathSciNet  ADS  Google Scholar 

  37. For example, the ‘wave function of the inflationary Universe’ can be obtained as a E = 0 solution of GWD equation for the action in Equation (95). T. Padmanabhan (1985), TIFR preprint.

    Google Scholar 

  38. E. Baum, Phys. Letts. 133B (1983), 185.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. R. Iyer N. Mukunda C. V. Vishveshwara

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Padmanabhan, T. (1989). Quantum Cosmology — The Story So Far. In: Iyer, B.R., Mukunda, N., Vishveshwara, C.V. (eds) Gravitation, Gauge Theories and the Early Universe. Fundamental Theories of Physics, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2577-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2577-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7664-7

  • Online ISBN: 978-94-009-2577-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics