Skip to main content

Motor Skill Development and Neural Networks for Position Code Invariance under Speed and Compliance Rescaling

  • Conference paper
Sensory-Motor Organizations and Development in Infancy and Early Childhood

Part of the book series: NATO ASI Series ((ASID,volume 56))

Abstract

This chapter presents two neural network modules capable of providing a secure foundation for safe self-organization of readily generalized movement skills. Called VITE and FLETE, these networks ensure position-code invariance under speed and compliance rescaling, respectively. This invariance property enables use of a simple strategy for skill development: For safety, we begin skill learning while performing at relatively low speed with relatively low limb compliance. Once learning guided by error feedback has reduced positioning errors, we increase speed and compliance. The invariance properties ensure that the shift to new values of the speed and compliance control signals will not require relearning. Both neural network models and the developmental strategy are compatible with, and help organize, large bodies of existing data. The FLETE network constitutes a comprehensive new model of the mammalian spino-muscular system.

Supported in part by the National Science Foundation (NSF IRI-87-16960).

Supported in part by the National Science Foundation (NSF IRI-87-16960) and the Air Force Office of Scientific Research (AFOSR F49620-86-C-0037 and AFOSR F49620-87-C-0018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbs, J.H., Gracco, V.L., and Cole, K.J. (1984). Control of multi-movement coordination: Sensorimotor mechanisms in speech motor control. Journal of Motor Behavior, 16, 195–231.

    PubMed  CAS  Google Scholar 

  • Akazawa, K., Kato, K., and Fujii, K. (1989). A neural network model of force control based on the size principle of motor unit. Proceedings of the International Joint Conference on Neural Networks, 1, pp.739–746.

    Article  Google Scholar 

  • Bedford, F. (1989). Constraints on learning new mappings between perceptual dimensions. Journal of Experimental Psychology: Human Perception and Performance, 15, 232–248.

    Article  Google Scholar 

  • Beggs, W.D.A. and Howarth, C.I. (1972). The movement of the hand towards a target. Quarterly Journal of Experimental Psychology, 24, 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Bizzi, E., Accornero, N., Chapple, W., and Hogan, N. (1984). Posture control and trajectory formation during arm movement. Journal of Neuroscience, 4(11), 2738–2744.

    PubMed  CAS  Google Scholar 

  • Bullock, D. (1987). Socializing the theory of intellectual development. In M. Chapman and R.A. Dixon (Eds.), Meaning and the growth of understanding: Wittgenstein’s significance for developmental psychology. New York: Springer-Verlag, 187–218.

    Google Scholar 

  • Bullock, D., Carpenter, G.A., and Grossberg, S. (1989). Self-organizing neural network architectures for adaptive pattern recognition and robotics. In V. Milutinovic and P. Antognetti (Eds.) Neural networks and their applications. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Bullock, D. and Grossberg, S. (1986). Neural dynamics of planned arm movements: Synergies, invariants, and trajectory formation. Paper presented at the symposium on Neural Models of Sensory-Motor Control at the annual meeting of the Society for Mathematical Psychology, Cambridge, MA, August 20.

    Google Scholar 

  • Bullock, D. and Grossberg, S. (1988a). Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review, 95(1), 49–90.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, D. and Grossberg, S. (1988b). The VITE model: A neural command circuit for generating arm and articulator trajectories. In J.A.S. Kelso, A.J. Mandel, and M.F. Shlesinger (Eds.), Dynamic patterns in complex systems. Singapore: World Scientific, 305–326.

    Google Scholar 

  • Bullock, D. and Grossberg, S. (1988c). Self-organizing neural architectures for eye movements, arm movements, and eye-arm coordination. In H. Haken (Ed.), Neural and synergetic computers. Berlin: Springer-Verlag, 197–228.

    Google Scholar 

  • Bullock, D. and Grossberg, S. (1988d). Neuromuscular realization of planned trajectories. Neural Networks, 1, Supplement 1, 329.

    Google Scholar 

  • Bullock, D. and Grossberg, S. (1989). VITE and FLETE: Neural modules for trajectory formation and postural control. In W.A. Hershberger (Ed.), Volitional action. Amsterdam: North-Holland/Elsevier, 253–297.

    Chapter  Google Scholar 

  • Carpenter, G.A. and Grossberg, S. (1987a). A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37, 54–115.

    Article  Google Scholar 

  • Carpenter, G.A. and Grossberg, S. (1987b). ART 2: Self-organization of stable category recognition codes for analog input patterns. Applied Optics, 1987, 26, 4919–4930.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, G.A. and Grossberg, S. (1990). ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Networks, 3, in press.

    Google Scholar 

  • Cooke, J.D. (1980). The organization of simple, skilled movements. In G.E. Stelmach and J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland, 199–212.

    Chapter  Google Scholar 

  • Cullheim, S. and Kellerth, J.O. (1978). A morphological study of the axons and recurrent axon collaterals of cat a-motoneurones supplying different functional types of muscle unit. Journal of Physiology (London), 281, 301–313.

    CAS  Google Scholar 

  • Evarts, E.V. and Tanji, J. (1974). Gating of motor cortex reflexes by prior instruction. Brain Research, 71, 479–494.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (λ model) for motor control. Journal of Motor Behavior, 18, 17–54.

    PubMed  CAS  Google Scholar 

  • Fischer, K.W. (1980). A theory of cognitive development: The control and construction of hierarchies of skills. Psychological Review, 87, 477–531.

    Article  Google Scholar 

  • Fitts, P.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Gachoud, J.P., Mounoud, P., Havert, C.A., and Viviani, P. (1983). Motor strategies in lifting movements: A comparison of adult and child performance. Journal of Motor Behavior, 15, 202–216.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F., and Massey, J.T. (1981). Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. Journal of Neurophysiology, 46(4), 725–743.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., and Massey, J.T. (1984). The representation of movement direction in the motor cortex: Single cell and population studies. In G.M. Edelman, W.E. Gall, and W.M. Cowan (Eds.), Dynamic aspects of neocortical function. New York: Wiley, 501–524.

    Google Scholar 

  • Grossberg, S. (1970). Neural pattern discrimination. Journal of Theoretical Biology, 27, 291–337.

    Article  PubMed  CAS  Google Scholar 

  • Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 217–257.

    Google Scholar 

  • Grossberg, S. (1978). A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In R. Rosen and F. Snell (Eds.), Progress in theoretical biology, Vol. 5. New York: Academic Press, 233–374.

    Google Scholar 

  • Grossberg, S. (1982). Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control. Boston: Reidel Press.

    Google Scholar 

  • Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance. Cognitive Science, 11, 23–63.

    Article  Google Scholar 

  • Grossberg, S. and Kuperstein, M. (1986). Neural dynamics of adaptive sensorymotor control: Ballistic eye movements. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Grossberg, S. and Kuperstein, M. (1989). Neural dynamics of adaptive sensorymotor control: Expanded Edition. New York: Pergamon Press.

    Google Scholar 

  • Hasan, Z. and Enoka, R.M. (1985). Isometric torque-angle relationship and movement-related activity of human elbow flexors: implications for the equilibrium-point hypothesis. Experimental Brain Research, 59, 441–450.

    CAS  Google Scholar 

  • Henneman, E. (1957). Relation between size of neurons and their susceptibility to discharge. Science, 26, 1345–1347.

    Article  Google Scholar 

  • Henneman, E. (1985). The size-principle: A deterministic output emerges from a set of probabilistic connections. Journal of Experimental Biology, 115, 105–112.

    PubMed  CAS  Google Scholar 

  • Hollerbach, J.M., Moore, S.P., and Atkeson, C.G. (1986). Workspace effect in arm movement kinematics derived by joint interpolation. In G. Gantchev, B. Dimitrov, and P. Gatev (Eds.), Motor control. Plenum Press.

    Google Scholar 

  • Horak, F.B. and Anderson, M.E. (1984a). Influence of globus pallidus on arm movements in monkeys, I. Effects of kainic acid-induced lesions. Journal of Neurophysiology, 52, 290–304.

    PubMed  CAS  Google Scholar 

  • Horak, F.B. and Anderson, M.E. (1984b). Influence of globus pallidus on arm movements in monkeys, II. Effects of stimulation. Journal of Neurophysiology, 52, 305–322.

    PubMed  CAS  Google Scholar 

  • Hore, J. (1987). Loss of set-dependent reactions during cerebellar dysfunction causes limb instability. In S.P. Wise (Ed.), Higher brain functions. New York: Wiley.

    Google Scholar 

  • Hore, J., Meyer-Lohmann, J., and Brooks, V.B. (1977). Basal ganglia cooling disables learned arm movements of monkeys in the absence of visual guidance. Science, 195, 584–586.

    Article  PubMed  CAS  Google Scholar 

  • Houk, J.C. and Rymer, W.Z., Neural control of muscle length and tension. In Handbook of physiology: The nervous system II. Bethesda, MD: American Physiological Society. 1981, 257–322.

    Google Scholar 

  • Humphrey, D.R. and Reed, D.J. (1983). Separate cortical systems for control of joint movement and joint stiffness: Reciprocal activation and coactivation of antagonist muscles. In J.E. Desmedt (Ed.), Motor control mechanisms in health and disease. New York: Raven Press, 347–372.

    Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. New York: Raven Press.

    Google Scholar 

  • Jacob, F. (1977). Evolution and tinkering. Science, 196, 1161–1166.

    Article  PubMed  CAS  Google Scholar 

  • Kawato, M., Furukawa, K., and Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57, 169–185.

    Article  PubMed  CAS  Google Scholar 

  • Kuperstein, M. (1988). Neural network model for adaptive hand-eye coordination for single postures. Science, 239, 1308–1311.

    Article  PubMed  CAS  Google Scholar 

  • Merton, P.A. (1953). Speculations on the servo-control of movement. In G.E.W. Wolstenholme (Ed.), CIBA Foundation Symposium: The spinal cord. London: Churchill, pp.247–255.

    Google Scholar 

  • Moore, S.P., and Marteniuk, R.G. (1986). Kinematic and electromyographic changes that occur as a function of learning a time-constrained aiming task. Journal of Motor Behavior, 18, 397–426.

    PubMed  CAS  Google Scholar 

  • Nagasaki, H. (1989). Asymmetric velocity and acceleration profiles of human arm movements. Experimental Brain Research, 74, 319–326.

    Article  CAS  Google Scholar 

  • Nemire, K. and Bridgeman, B. (1987). Oculomotor and skeletal motor systems share one map of visual space. Vision Research, 27, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Ostry, D.J., Cooke, J.D., and Munhall, K.G. (1987). Velocity curves of human arm and speech movements. Experimental Brain Research, 68, 37–46.

    Article  CAS  Google Scholar 

  • Partridge, L.D. (1982). The good enough calculi of evolving control systems: evolution is not engineering. American Journal of Physiology, 242, R173–R177.

    PubMed  CAS  Google Scholar 

  • Piaget, J. (1985). The equilibration of cognitive structures. Chicago: University of Chicago Press.

    Google Scholar 

  • Pompeiano, O. (1984). Recurrent inhibition. In R.A. Davidoff (Ed.), Handbook of the spinal cord, Vols. 2 and 3. Anatomy and physiology. New York: Marcel Dekker.

    Google Scholar 

  • Rack, P.M.H. (1981). Limitations of somatosensory feedback in control of posture and movement. In V.B. Brooks (Ed.), Motor control. Handbook of Physiology, Sect.1, Vol.2. Bethesda, MD: American Physiological Society, pp.229–256.

    Google Scholar 

  • Renshaw, B. (1946). Central effects of centripetal impulses in axons of spinal ventral roots. Journal of Neurophysiology, 9, 191–204.

    PubMed  CAS  Google Scholar 

  • Ritter, H.J., Martinez, T.M., and Schulten, K.J. (1989). Topology conserving maps for learning visuo-motor-coordination. Neural Networks, 2, 159–168.

    Article  Google Scholar 

  • Rumelhart, D.E. and McClelland, J.L. (Eds.) (1986). Parallel distributed processing, Vol.1. Cambridge, MA: MIT Press.

    Google Scholar 

  • Simon, H.A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.

    Google Scholar 

  • Soechting, J.F. and Flanders, M. (1989). Errors in pointing are due to approximations in sensorimotor transformations. Journal of Neurophysiology, 62, 595–608.

    PubMed  CAS  Google Scholar 

  • Thorpe, S.J., O’Regan, K., and Pouget, A. (1989). Humans fail on XOR pattern classification problems. In L. Personnaz and G. Dreyfus (Eds.), Neural networks from models to applications. Paris: I.D.S.E.T., pp.12–25.

    Google Scholar 

  • Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Zelaznik, H.N., Schmidt, R.A., and Gielen, C.C.A.M. (1986). Kinematic properties of rapid aimed hand movements. Journal of Motor Behavior, 18, 353–372.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Bullock, D., Grossberg, S. (1990). Motor Skill Development and Neural Networks for Position Code Invariance under Speed and Compliance Rescaling. In: Bloch, H., Bertenthal, B.I. (eds) Sensory-Motor Organizations and Development in Infancy and Early Childhood. NATO ASI Series, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2071-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2071-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7430-8

  • Online ISBN: 978-94-009-2071-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics