Skip to main content

Distribution of Residues of Certain Second-Order Linear Recurrences Modulo P

  • Chapter
Applications of Fibonacci Numbers

Abstract

Let (w) = w(a, b) be a second-order linear recurrence defined by the relation

$${w_{n + 2}} = a{w_{n + 1}} + b{w_n},$$
((1))

where the parameters a and b and the initial terms w0, w1 are all integers. Let D = a2 + 4b be the discriminant of w(a, b). Let

$${x^2} - ax - b$$

be the characteristic polynomial associated with w(a, b) and let r1 and r2 be its characteristic roots. Throughout this paper, p will denote an odd prime unless specified otherwise. Further, d will always denote a residue modulo p. We say that the recurrence (w) is defective modulo p if (w) has an incomplete system of residues modulo p.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backstrom, R. P. “On the Determination of the Zeros of the Fibonacci Sequence.” The Fibonacci Quarterly 4, No. 4 (1966): pp. 313–322.

    MathSciNet  MATH  Google Scholar 

  2. Carmichael, R. D. “On the Numerical Factors of the Arithmetic Forms α n ± β n.” Ann. Math. Second Series 15 (1913): pp. 30–70.

    Article  MATH  Google Scholar 

  3. Lehmer, D. H. “An Extended Theory of Lucas’ Functions.” Ann. Math. Second Series 31 (1930): pp. 419–448.

    Article  MathSciNet  MATH  Google Scholar 

  4. Lidl, R. & Niederreiter, H. Finite Fields. Reading, Massachusetts: Addison-Wesley, 1983.

    MATH  Google Scholar 

  5. Niederreiter, H. “On the Cycle Structure of Linear Recurring Sequences.” Math. Scand. 38 (1976): pp. 53–77.

    MathSciNet  MATH  Google Scholar 

  6. Somer, L. “The Fibonacci Ratios F k +1/F k Modulo p.” The Fibonacci Quarterly 13, No. 4 (1975): pp. 322–324.

    Google Scholar 

  7. Somer, L. “The Divisibility Properties of Primary Lucas Recurrences with Respect to Primes.” The Fibonacci Quarterly 18, No. 4 (1980): pp. 316–334.

    MathSciNet  MATH  Google Scholar 

  8. Somer, L. “Possible Periods of Primary Fibonacci-Like Sequences with Respect to a Fixed Odd Prime.” The Fibonacci Quarterly 20, No. 4 (1982): pp. 311–333.

    MathSciNet  MATH  Google Scholar 

  9. Somer, L. “Primes Having an Incomplete System of Residues for a Class of Second-Order Recurrences.” Applications of Fibonacci Numbers. Ed. by A. F. Horadam, A. N. Philippou, and G. E. Bergum. Dordrecht: Kluwer Academic Publishers, (1988): pp. 113–141.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Somer, L. (1990). Distribution of Residues of Certain Second-Order Linear Recurrences Modulo P. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1910-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1910-5_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7352-3

  • Online ISBN: 978-94-009-1910-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics