Skip to main content

Alternatives for Soliton Transmission over Transoceanic Distances

  • Conference paper
Physics and Applications of Optical Solitons in Fibres ’95

Part of the book series: Solid-State Science and Technology Library ((SSST,volume 3))

  • 122 Accesses

Abstract

Soliton transmission is a promising technology for future undersea communication systems, owing specifically to its very high capacity potential (>40-100 Gbit/s), the possibility of long amplifier/repeater spacings (>60-100 km), and increased transmission distances (>10,000 km). In order to achieve such performance, however, various soliton transmission control techniques are required. To date, the two main types of soliton control is either purely passive (fixed or sliding frequency-guiding filters), or active (synchronous modulation with guiding-filtering). The first approach is fully compatible with wavelength-division multiplexing, advantageously providing routing functionality. The second enables full signal regeneration, yielding enhanced system margins and virtually removing transmission distance limitations. In this paper, we first discuss the key technologies of soliton transmission, and then present recent experimental results obtained in our laboratory for both types of soliton systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Desurvire, E.: The golden age of optical fiber amplifiers, Physics Today Vol.47, No.1 (1994), 20;

    Article  CAS  Google Scholar 

  2. Desurvire, E.: Erbium-doped fiber amplifiers: Principles and applications, J.Wiley, New York, (1994).

    Google Scholar 

  3. Bergano, N. S. et al.: 40 Gbit/s WDM transmission of eight 5 Gbit/s data channels over transoceanic distances using the conventional NRZ modulation format, Proc. OFC’95 PD19–1; id. 100 Gbit/s WDM transmission of twenty 5 Gbit/s NRZ data channels over transoceanic distances unsing gain-flattened amplifier chain, Proc. ECOC’95 PD-paper ThA3.1

    Google Scholar 

  4. Amano, K. and Iwamoto, Y.: Optical fiber submarine cable systems, IEEE J. Lightwave Technology Vol.8, No.4 (1990), 595.

    Article  Google Scholar 

  5. Hasegawa, A. and Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett. Vol.23, No.3 (1973), 142.

    Article  CAS  Google Scholar 

  6. Mollenauer, L. F. and Smith, K.: Demonstration of soliton transmission over more than 4,000 km in fiber compensated by Raman gain, Optics Lett. Vol.13, No.8 (1988), 675;

    Article  CAS  Google Scholar 

  7. see also L. F. Mollenauser, L. F. et al.: Experimental study of soliton transmission over more than 10,000 km in dispersion-shifted fiber, Optics Lett. Vol.15, No.1 (1990), 1203.

    Article  Google Scholar 

  8. Mollenauer, L. F. et al.: The sliding frequency-guiding filter: an improved form of soliton jitter control, Optics Lett. Vol.17, No.22 (1992), 1575.

    Article  CAS  Google Scholar 

  9. Nakazawa, M. et al.: 10 Gbit/s soliton data transmission over one million kilometers, Electron. Lett. Vol.27, No.14 (1991), 1270.

    Article  Google Scholar 

  10. Favre, F. et al.: Robustness of 20 Gbit/s 63 km span 6 Mm sliding-filter controlled soliton transmission, Electron. Lett. Vol.31, No.18 (1995), 1600.

    Article  Google Scholar 

  11. Hamaide, J.-P. et al.: Experimental 10 Gbit/s sliding-filter guided soliton transmission up to 19 Mm with 63 km amplifier spacing using large effective-area fiber management, Proc. ECOC’95 PD-paper ThA3.7 (1995).

    Google Scholar 

  12. Suzuki, K. and Nakazawa, M.: Recent progress in optical soliton communications, Optical Fiber Technology Vol.1, No.4 (1995), 289.

    Article  Google Scholar 

  13. Aubin, G. et al.: 20 Gbit/s soliton transmission over transoceanic distances with a 105 km amplifier span, Electron. Lett. Vol.31, No.13 (1995), 1079;

    Article  Google Scholar 

  14. see also Aubin, G. et al.: Electroabsorption modulator for a 20 Gbit/s soliton transmission experiment over 1 million km with a 140 km amplifier span, Proc.IOOC’95 PD2–5 (1995), 29.

    Google Scholar 

  15. Figure based from an original diagram kindly communicated by Suyama, M. et al., Fujitsu Limited, (1995).

    Google Scholar 

  16. Mollenauer, L. F. et al.: WDM with solitons in ultra-long distance transmission using lumped amplifiers, IEEE J.Lightwave Technol. Vol.9, No.3 (1991), 362.

    Article  Google Scholar 

  17. Uchiyama, K. et al.: Ultrafast polarisation-independent all-optical switchinh using a polarisation-diversity scheme in the nonlinear optical loop mirror, Electron. Lett. Vol.28, No.20 (1992), 1864.

    Article  Google Scholar 

  18. Clesca, B. et al.: 1.5 03bc fluoride-based fiber amplifiers for wideband multichannel transport networks, Optical Fiber Technology Vol.1, No.2 (1995), 135.

    Article  Google Scholar 

  19. Kolltveit, E. et al.: Soliton frequency-guiding in a 2x5 Gbit/s WDM system using a UV-written fibre Fabry-Perot filter, Proc.ECOC’95 MoA3.6.

    Google Scholar 

  20. Jinno, M. and Abe, M.: All-optical regenerator based on nonlinear fibre Sagnac interferometer, Electron. Lett. Vol.28, No.14 (1992), 1350.

    Article  Google Scholar 

  21. Widdowson, T. et al.: Soliton shepherding: all-optical active soliton control over global distances, Electron. Lett. Vol.30, No.12 (1994), 990.

    Article  Google Scholar 

  22. Lucek, J. K. and Smith, K.: All-optical signal regenerator, Optics Lett. Vol.18, No.15 (1993), 1226;

    Article  CAS  Google Scholar 

  23. see also W. A. Pender, W. A. et al.: 10 Gbit/s all-optical regenerator, Electron. Lett. Vol.31, No.18 (1995), 1587.

    Article  Google Scholar 

  24. Bigo, S. and Desurvire, E.: 20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator, Electron. Lett. Vol.31, No.21 (1995), 1855; see also Bigo, S. et al.: Analysis of soliton in-line regeneration through two-wavelength nonlinear loop mirror as synchronous amplitude/phase modulator, Electron. Lett. Vol.31, No.25 (1995).

    Article  Google Scholar 

  25. Takada, A. et al.: Picosecond optical pulse compression from gain-switched 1.3 03bcm distributed-feedback laser diode through highly dispersive single-mode fibre, Electron. Lett. Vol.21, No.21 (1985), 969.

    Article  Google Scholar 

  26. Lourtioz, J.-M. et al.: Fourier-transform-limited pulses from gain-switched distributed-Bragg-reflector lasers using simultaneous modulation of gain and phase sections, Electron. Lett. Vol.28, No.16 (1992), 1499.

    Article  Google Scholar 

  27. Kataoka, T. et al.: 20 Gbit/s transmission experiments using an integrated MQW modulator/DFB laser module, Electron. Lett. Vol.30, No.11 (1994), 872.

    Article  Google Scholar 

  28. Mollenauer, L. F. et al.: Demonstration of error-free soliton transmission over more than 15,000 km at 5 Gbit/s, single-channel, and over more than 11,000 km at 10 Gbit/s in two-channel WDM, Electron. Lett. Vol.28, No.8 (1992), 792.

    Article  Google Scholar 

  29. Golovchenko, E. A. et al.: Soliton propagation with up-and down-sliding frequency guiding filters, Optics Lett. Vol.20, No.6 (1995), 539.

    Article  CAS  Google Scholar 

  30. Mollenauer, L. F. et al.: Demonstration, using sliding frequency-guiding filters, of error-free soliton transmission over more than 20 Mm at 10 Gbit/s, single-channel, and over more than 13 Mm at 20 Gbit/s in two-channel WDM, Electron. Lett. Vol.29, No.10 (1993), 910.

    Article  Google Scholar 

  31. Hamaide, J.-P. et al.: to be submitted to Electron. Lett.

    Google Scholar 

  32. Hamaide, J.-P. et al.: Transoceanic optical communications with optical amplification, in Proc. European Fiber and Optical Communications Conferences (EFOC), Paris, Prance, 54 (1992); see also O. Audouin and Hamaide, J.-R: Enhancement of amplifier spacing in long-haul optical links through the use of large-effective-area transmission fiber, to be published in IEEE Photonics Technology Letters.

    Google Scholar 

  33. Gordon, J. P. and Mollenauer, L. F.: Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission. IEEE J. Lightwave Technology Vol.9, No.2 (1991), 170.

    Article  Google Scholar 

  34. Biotteau, B. et al.: Enhancement of soliton system performance by use of new large effective area fibres, Electron. Lett. Vol.31, No.23 (1995), 2026.

    Article  Google Scholar 

  35. King, J. P. et al.: Polarisation-independent 20 Gbit/s soliton transmission over 12,500 km using amplitude and phase modulation soliton transmission control, Electron. Lett. Vol.31, No.13 (1995), 1090.

    Article  Google Scholar 

  36. Brun-Maunand, E.: Chromatic dispersion influence in 20 Gbit/s regenerated transoceanic soliton systems having up to 140 km amplifier spacing, submitted to Electron. Lett..

    Google Scholar 

  37. Patrick, D. M. and Manning, R. J.: 20 Gbit/s all-optical clock recovery using semiconductor nonlinearity, Electron. Lett. Vol.30, No.2 (1994), 151.

    Article  Google Scholar 

  38. Kamatani, O. and Kawanishi, S.: Ultrahigh speed characteristics of a phase-locked loop based on four-wave mixing in a laser-diode amplifier, Proc.IOOC’95 WC1-4 (1995), 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Desurvire, E., Chesnoy, J. (1996). Alternatives for Soliton Transmission over Transoceanic Distances. In: Hasegawa, A. (eds) Physics and Applications of Optical Solitons in Fibres ’95. Solid-State Science and Technology Library, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1736-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1736-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7277-9

  • Online ISBN: 978-94-009-1736-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics