Skip to main content

Physical, Thermodynamic and Solubility Data

  • Chapter
Potash
  • 453 Accesses

Abstract

This chapter will attempt to present some of the basic physical and thermodynamic data for potassium chloride and its simple aqueous solutions. However, only a limited amount of data will be given for other potash salts and solutions because of the immense amount of information that would be required to cover all of the potassium compounds and their mixtures. Since potassium chloride is such a common and basic compound it has been extensively studied, and data is available from the late 1800’s to the present. In some respects this is a mixed blessing since the data in many cases is inconsistent. The early data was often presented as tables in centigrade and weight percent units, later it was reported in molar (moles/liter) concentrations, but now it is almost always expressed as molal (moles/1,000 g water) solutions with quite limited and random molal and temperature values for each series of tests. This is the result of the present fairly universal objective of using the data to form very large polynomial equations, and present them instead of the more useable tables of data. The new polynomial equations are then compared to previous researcher’s polynomials, but unfortunately discrepancies of 4–20% for some of the data is either ignored or brushed-off as the new values being better than the old ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Potash 1955. “Product Properties”, American Potash and Chemical Co., Trona, CA.

    Google Scholar 

  • Autenrieth, H. 1953. “Newer Developments in the Graphic and Mathematical Treatment of the Processes in the Manufacture of Potash Fertilizers from Crude Salts”, Kali u. Steinsalz, No. 2, pp. 3–17 (German).

    Google Scholar 

  • Autenrieth, H. 1954. “The Stable and Metastable Equilibria of the Reciprocal Salt Pair K2C12 + MgSO4 ⇄ K2SO4 + MgCl2 With and Without NaCl Saturation, and Their Application in Practice”, Kali u. Steinsalz, No. 7, pp. 3–22 (German).

    Google Scholar 

  • Autenrieth, H. 1955. “New Investigations of the Quinary NaCl-Saturated Systems of the Salts from Oceanic Deposits of Importance in Crude Potassium Salt Manufacture”, Kali u. Steinsalz, V. 1, No. 11, pp. 18–32 (German).

    Google Scholar 

  • Berg, W. T.; Morrison, J. A. 1957. “The Heat Capacity of KCl, KBr, KI and Nal Between 2.8–270°K”, Proc. Royal Soc. London, Series A, V. 242, No. 1230, pp. 467–476 (Oct. 8).

    Article  Google Scholar 

  • Blasdale, W. C. 1918. “The System Water and the Sulfates and Chlorides of Sodium and Potassium”, J. Ind. & Eng. Chem., V. 10, No. 5, pp. 344–347 (May).

    Article  Google Scholar 

  • Borchert, H.; Muir, R. O. 1964. Salt Deposits, D. Van Nostrand, NY, 338p.

    Google Scholar 

  • Braitsch, O. 1971. Salt Deposits, Springer-Verlag, Berlin, 297p.

    Google Scholar 

  • Chemtob, E. 1975. Personal communication.

    Google Scholar 

  • Correia, R. J.; Kestin, J. 1981. “Viscosity and Density of NaSO4 and K2SO4 Solutions from 20–90°C and 0–30 MPa”, J. of Chem. & Eng. Data, V. 26, No. 1, pp. 43–47.

    Article  Google Scholar 

  • Correia, R. J.; Kestin, J.; Khalifa, H. E. 1979. “Viscosity of KCl-NaCl Solutions from 25–150°C and 0–30MPa”, Ber. Bun. Phys. Chem., V. 83, pp. 20–24.

    Google Scholar 

  • d’Ans, J. 1952. “Die Bedeutung von Van’t Hoff’s Arbeiten Uber Losungsgleichgewichte.”, Zeitschr. Elektrochem., V. 56, pp. 497–505 (German).

    Google Scholar 

  • Enck, F. D. 1960. “Behavior of the Principal Elastic Moduli and Specific Heat at Constant Volume of KCl at Elevated Temperatures”, Physical Review, V. 119, No. 6, pp. 1873–1877 (Sept. 15).

    Google Scholar 

  • Eugster, H. P.; Harvie, C. E.; Weare, J. H. 1980. “Mineral Equilibria in a Six Component Sea Water System, Na-K-Mg-Ca-SO4-Cl-H2O at 25°C”, Geochim. et Cosmochim. Acta, V. 44, pp. 1335–1347.

    Article  Google Scholar 

  • Fabuss, B. M.; Korosi, A. 1958. “Properties of Sea Water and Solutions Containing NaCl, KCl, Na2SO4 and MgSO4”, U.S. Off. Saline Water, Res. & Dev. Prog. Rept. 384, U.S. Dept. Interior.

    Google Scholar 

  • Goncalves, F. A.; Kestin, J. 1977. “The Viscosity of NaCl and KCl Solutions in the Range of 25–50°C”, J. Ber. Bun. Phys. Chem., V. 81, No. 11, pp. 1156–1161.

    Google Scholar 

  • Grimes, C. E.; Kestin, J.; Khalifa, H. E. 1979. “Viscosity of KCl Solutions From 25–150°C and 0–30MPa”, J. Chem. & Eng. Data, V. 24, No. 2, pp. 121–126.

    Article  Google Scholar 

  • Gucker et al. 1966. “Adiabatic Compressibility of Aqueous Solutions of NaCl and KCl at 25°C”, Proc. Natl. Acad. Sei., USA, V. 55, No. 1, pp. 12–19 (January).

    Article  Google Scholar 

  • Harvie, C. E. et al. 1980. “Evaporation of Sea Water: Calculated Mineral Sequences”, Science, V. 208, pp. 498–500 (May).

    Article  Google Scholar 

  • Herrington, T. M.; Jackson, R. J. 1973. “Osmotic Coefficients of KCl Solutions at 50 and 70°C”, J. Chem. Soc, Faraday Trans., V. 1, No. 69, pp. 1635–1647.

    Google Scholar 

  • Hidalgo, A. F.; Orr, C. 1968. “Method of Predicting the Properties of Supersaturated Solutions of Alkali Chlorides”, J. of Chem. & Eng. Data, V. 13, No. 1, pp. 49–53.

    Article  Google Scholar 

  • Kestin, J.; Khalifa, H. E.; Correia, R. J. 1981a. “Viscosity of KCl Solutions From 25–150°C and 0.1–30MPa”, J. Phys. Chem. Ref. Data, V. 10, No. 1, pp. 57–70.

    Article  Google Scholar 

  • Kestin, J.; Shankland, I. R.; Paul R. 1981b. “The Viscosity of Aqueous KCl Solutions in the Temperature Range 25–200°C and the Pressure Range 0.1–30MPa”, Int. J. Thermophysics, V. 2, No. 4, pp. 301–314.

    Article  Google Scholar 

  • Korosi, A.; Fabuss, B. M. 1968. “Viscosities of NaCl, KCl, Na2SO4 and MgSO4 at Concentrations and Pressures of Interest for Desalination”, J. Chem. & Eng. Data, V. 13, No. 4, pp. 548–552 (October).

    Article  Google Scholar 

  • Kumar, A.; Patwardhan, V. S. 1992. “Activity and Osmotic Coefficients, Specific Heat and Relative Enthalpy of Single Salts at High Temperature and Concentration”, Chem. Eng. Science, V. 47, No. 15/16, pp. 4039–4047.

    Article  Google Scholar 

  • Kwon, T. H. 1989. “Thermodynamic Properties of Crystalline KCl”, Canadian J. of Physics, V. 67, No. 1, pp. 664–668 (July).

    Article  Google Scholar 

  • Light, N. 1993. “Breaking the K Barrier”, Farm Chemicals, V. 156, No. 10, pp. 22–23, 26 (Oct.).

    Google Scholar 

  • Likke, S.; Bromley, L. A. 1973. “Heat Capacities of Aqueous NaCl, KCl, MgCl2, MgSO4 and Na2SO4 Solutions Between 80 and 200°C”, J. Chem. & Eng. Data, V. 18, No. 2, pp. 189–195.

    Article  Google Scholar 

  • Mayrath, J. E.; Wood, R. H. 1983. “Enthalpy of Dilution of Na2SO4, K2SO4 and MgSO4 Solutions at 100 and 150°C, and MgCl2 at 100, 150 and 200°C”, J. of Chem. & Eng. Data, V. 28, No. 1, pp. 56–59.

    Article  Google Scholar 

  • Mays, F. H. 1964. “Method of Producing Potassium Sulfate”, U.S. Patent 3,369,867, 8p. (Feb. 20).

    Google Scholar 

  • Pabalan, R. T.; Pitzer, K. S. 1988. “Apparent Molar Heat Capacity and Other Thermodynamic Properties of Aqueous KCl Solutions to High Temperatures and Pressures”, J. Chem. & Eng. Data, V. 33, No. 3, pp. 354–362.

    Article  Google Scholar 

  • Parker, V. B. 1965. “Thermal Properties of Aqueous Univalent Electrolytes”, Nat. Std. Ref. Data Series, Nat. Bur. Stds. 2, U.S. Dept. Com., 60p. (April 1).

    Google Scholar 

  • Patil, K. R.; Tripathi, A. D.; Pathak, G.; Katil, S. S. 1991. “Vapor Pressure of Aqueous Solutions of KCl and Other Halides”, J. Chem. & Eng. Data, V. 36, No. 2, pp. 225–230.

    Article  Google Scholar 

  • Perry, R. H.; Chilton, C. H. 1969. Chemical Engineers’ Handbook, 5th Ed., Chapter 3, 250p.

    Google Scholar 

  • Potter, R. W.; Babcock, R. S.; Brown, D. L. 1975. “Solubility Relationships in the NaCl-KCl-H2O System”, EOS Trans. Amer. Geophys. Union, V. 56, No. 12, Abstract V 43, p. 1075 (Dec).

    Google Scholar 

  • Potter, R. W.; Brown, D. L. 1978a. “The Density of KCl Solutions From 0–400°C”, USGS Open File Rept. 76–243, 6p.

    Google Scholar 

  • Potter, R. W.; Brown, D. L. 1978b. “The Density of K2SO4 Solution From 0–200°C”, USGS Open File Rept. 76–501, 8p.

    Google Scholar 

  • Potter, R. W.; Clynne, M. A. 1978. “Solubility of NaCl, KCl, CaCl2, Na2SO4 and K2SO4 to 100°C”, J. Research, U.S. Geol. Survey, V. 6, No. 6, pp. 701–705 (Nov.-Dec).

    Google Scholar 

  • Raznjevic, K. 1976. Handbook of Thermodynamic Tables and Charts, Hemisphere Pub. Corp. (McGraw-Hill), NY, 392p.

    Google Scholar 

  • Robertson, E. C. 1962. “Physical Properties of Evaporite Minerals”, US Geol. Survey Rept. TEI-821, 89p. (June).

    Google Scholar 

  • Robinson, R. A. 1961. “Activity Coefficients of NaCl and KCl in Mixed Solutions at 25°C”, J. Phys. Chem., V. 65, pp. 662–667 (April).

    Article  Google Scholar 

  • Romankiw, L. A.; Chou, I. M. 1983. “Densities of Aqueous NaCl, KCl, MgCl2 and CaCl2 in the Concentration Range 0.5–6.1 m at 25, 30, 35, 44, and 45°C”, J. Chem. Eng. Data, pp. 300–305.

    Google Scholar 

  • Rovira, J. M. 1959. “Sodium Sulfate’s Use in the Production of Potassium Sulfate”, Revista ION, No. 220, 9p. (Nov. 10).

    Google Scholar 

  • Seidell, A. 1965. Solubilities of Inorganic and Metal-Organic Compounds, Editor Linke, W. F., V. 2, American Chem. Soc, Washington, DC, pp. 1–340.

    Google Scholar 

  • Srinivasan, R. 1955. “Thermal Expansion of NaCl and KCl from -164 to 278°C”, J. Indian Inst. Sei., Sect. A, V. 37, pp. 232–241.

    Google Scholar 

  • Sterner, S. M.; Hall, D. L.; Bodnar, R. J. 1988. “Solubility Relations in the System NaCl-KCl-H2O Under Vapor-Saturated Conditions”, Geochim. et Cos-mochim. Acta., V. 52, pp. 989–1005.

    Article  Google Scholar 

  • Stewart, F. H. 1963. “Marine Evaporites”, U. S. Geol. Survey Prof. Paper 440Y, Ch. Y, 52 p.

    Google Scholar 

  • Stull, D. R.; Prophet, H. 1971. JANAF Thermochemical Tables, 2nd Ed., Nat. Bur. Stds. NSRDS-NBS37.

    Google Scholar 

  • Sunier, A. A.; Baumbach, J. 1976. “The Solubility of Potassium Chloride in Ordinary and Heavy Water”, J. Chem. & Eng. Data, V. 21, No. 3, pp. 335–336.

    Article  Google Scholar 

  • Teeple, J. E. 1929. The Industrial Development of Searles Lake Brines, Chem. Catalogue Co., N.Y., 164 p.

    Google Scholar 

  • Thurmond, V. L.; Potter, R. W.; Clynne, M. A. 1978. “The Densities of Saturated Solutions of NaCl and KCl From 10–105°C”, U.S. Geol. Survey Open File Report 84–253, 10p.

    Google Scholar 

  • Tompkins, R. P. 1981. “Physical Properties Data for Rock Salt”, Nat. Bur. Stds. Monograph 167, Ch. 2, Physical Properties Data for Rock Salt, L. H. Gevantman (ed.), pp. 45–101 (Jan.).

    Google Scholar 

  • Van’t Hoff, J. H. 1905. “Zur Bildung der Ozeanischen Salzlagerstätten”, Vieweg. Braunschweig, Part 1, 85 p., Part 2 (1909) 90 p. (German).

    Google Scholar 

  • Washburn, E. W. 1928. International Critical Tables, V. 3, McGraw-Hill, NY, 444p.

    Google Scholar 

  • Weast, R. C. 1977. Handbook of Chemistry and Physics, 58th Ed., CRC Press, Cleveland, OH.

    Google Scholar 

  • Wood, J. R. 1975. “Thermodynamics of Brine-Salt Equilibria, Part 1, The Systems NaCl-KCl-MgCl2-CaCl2-H2O and NaCl-MgSO4-H2O at 25°C”, Geochim. et Cos-mochim. Acta, V. 39, pp. 1147–1163.

    Article  Google Scholar 

  • Wood, J. R. 1976. “Thermodynamics of Brine-Salt Equilibria, Part II. The System NaCl-KCl-H2O From 0 to 200°C”, Geochim. et Cosmochim. Acta, V. 40, pp. 1211–1220.

    Article  Google Scholar 

  • Ziegenbalg, G.; Holldorf, H. 1993. “Estimation of the Solid-Liquid Phase Equilibria in the Quinary and Hexary (with Ca) Sea Water System Below 140°C”, Seventh Symp. on Salt, The Salt Inst., V. 1, pp. 549–553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Garrett, D.E. (1996). Physical, Thermodynamic and Solubility Data. In: Potash. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1545-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1545-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7189-5

  • Online ISBN: 978-94-009-1545-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics